scholarly journals Joining the interface: a site for Nmd3 association on 60S ribosome subunits

2010 ◽  
Vol 189 (7) ◽  
pp. 1071-1073 ◽  
Author(s):  
Marlene Oeffinger

The adaptor protein Nmd3 is required for Crm1-dependent export of large ribosomal subunits from the nucleus. In this issue, Sengupta et al. (2010. J. Cell Biol. doi:10.1083/jcb.201001124) identify a binding site for yeast Nmd3 on 60S ribosomal subunits using cryoelectron microscopy and suggest a conformational model for its release in the cytoplasm. The study provides the first detailed structural description of a ribosome biogenesis factor in complex with the large subunit.

2010 ◽  
Vol 189 (7) ◽  
pp. 1079-1086 ◽  
Author(s):  
Jayati Sengupta ◽  
Cyril Bussiere ◽  
Jesper Pallesen ◽  
Matthew West ◽  
Arlen W. Johnson ◽  
...  

The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces cerevisiae. The density corresponding to Nmd3 is directly visible in the cryo-EM map and is attached to the regions around helices 38, 69, and 95 of the 25S ribosomal RNA (rRNA), the helix 95 region being adjacent to the protein Rpl10. We identify the intersubunit side of the large subunit as the binding site for Nmd3. rRNA protection experiments corroborate the structural data. Furthermore, Nmd3 binding to 60S subunits is blocked in 80S ribosomes, which is consistent with the assigned binding site on the subunit joining face. This cryo-EM map is a first step toward a molecular understanding of the functional role and release mechanism of Nmd3.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Constance Rink ◽  
Martin Ciganda ◽  
Noreen Williams

ABSTRACT Ribosomal maturation is a complex and highly conserved biological process involving migration of a continuously changing RNP across multiple cellular compartments. A critical point in this process is the translocation of individual ribosomal subunits (60S and 40S) from the nucleus to the cytoplasm, and a number of export factors participate in this process. In this study, we characterize the functional role of the auxiliary export receptors TbMex67 and TbMtr2 in ribosome biogenesis in the parasite Trypanosoma brucei. We demonstrate that depletion of each of these proteins dramatically impacts the steady-state levels of other proteins involved in ribosome biogenesis, including the trypanosome-specific factors P34 and P37. In addition, we observe that the loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation. Although the TbMex67-TbMtr2 heterodimer is structurally distinct from Mex67-Mtr2 complexes previously studied, our data show that they retain a conserved function in ribosome biogenesis. IMPORTANCE The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite.


2021 ◽  
Vol 118 (48) ◽  
pp. e2111862118
Author(s):  
Lunda Shen ◽  
Zhaoming Su ◽  
Kailu Yang ◽  
Cheng Wu ◽  
Thomas Becker ◽  
...  

Ribosomes translate RNA into proteins. The protein synthesis inhibitor cycloheximide (CHX) is widely used to inhibit eukaryotic ribosomes engaged in translation elongation. However, the lack of structural data for actively translating polyribosomes stalled by CHX leaves unanswered the question of which elongation step is inhibited. We elucidated CHX’s mechanism of action based on the cryo-electron microscopy structure of actively translating Neurospora crassa ribosomes bound with CHX at 2.7-Å resolution. The ribosome structure from this filamentous fungus contains clearly resolved ribosomal protein eL28, like higher eukaryotes but unlike budding yeast, which lacks eL28. Despite some differences in overall structures, the ribosomes from Neurospora, yeast, and humans all contain a highly conserved CHX binding site. We also sequenced classic Neurospora CHX-resistant alleles. These mutations, including one at a residue not previously observed to affect CHX resistance in eukaryotes, were in the large subunit proteins uL15 and eL42 that are part of the CHX-binding pocket. In addition to A-site transfer RNA (tRNA), P-site tRNA, messenger RNA, and CHX that are associated with the translating N. crassa ribosome, spermidine is present near the CHX binding site close to the E site on the large subunit. The tRNAs in the peptidyl transferase center are in the A/A site and the P/P site. The nascent peptide is attached to the A-site tRNA and not to the P-site tRNA. The structural and functional data obtained show that CHX arrests the ribosome in the classical PRE translocation state and does not interfere with A-site reactivity.


2006 ◽  
Vol 26 (2) ◽  
pp. 513-522 ◽  
Author(s):  
Nina B. Leeds ◽  
Eliza C. Small ◽  
Shawna L. Hiley ◽  
Timothy R. Hughes ◽  
Jonathan P. Staley

ABSTRACT Biogenesis of the small and large ribosomal subunits requires modification, processing, and folding of pre-rRNA to yield mature rRNA. Here, we report that efficient biogenesis of both small- and large-subunit rRNAs requires the DEAH box ATPase Prp43p, a pre-mRNA splicing factor. By steady-state analysis, a cold-sensitive prp43 mutant accumulates 35S pre-rRNA and depletes 20S, 27S, and 7S pre-rRNAs, precursors to the small- and large-subunit rRNAs. By pulse-chase analysis, the prp43 mutant is defective in the formation of 20S and 27S pre-rRNAs and in the accumulation of 18S and 25S mature rRNAs. Wild-type Prp43p immunoprecipitates pre-rRNAs and mature rRNAs, indicating a direct role in ribosome biogenesis. The Prp43p-Q423N mutant immunoprecipitates 27SA2 pre-rRNA threefold more efficiently than the wild type, suggesting a critical role for Prp43p at the earliest stages of large-subunit biogenesis. Consistent with an early role for Prp43p in ribosome biogenesis, Prp43p immunoprecipitates the majority of snoRNAs; further, compared to the wild type, the prp43 mutant generally immunoprecipitates the snoRNAs more efficiently. In the prp43 mutant, the snoRNA snR64 fails to methylate residue C2337 in 27S pre-rRNA, suggesting a role in snoRNA function. We propose that Prp43p promotes recycling of snoRNAs and biogenesis factors during pre-rRNA processing, similar to its recycling role in pre-mRNA splicing. The dual function for Prp43p in the cell raises the possibility that ribosome biogenesis and pre-mRNA splicing may be coordinately regulated.


1977 ◽  
Vol 73 (3) ◽  
pp. 696-704 ◽  
Author(s):  
U Lonn ◽  
JE Edstrom

In Chironomus tentans salivary gland cells, the cytoplasm can be dissected into concentric zones situated at increasing distances from the nuclear envelope. After RNA labeling, the newly made ribosomal subunits are found in the cytoplasm mainly in the neighborhood of the nucleus with a gradient of increasing abundance towards the periphery of the cell. The gradient for the small subunit lasts for a few hours and disappears entirely after treatment with puromycin. The large subunit also forms a gradient but one which is only partially abolished by puromycin. The residual gradient which which is resistant to the addition of the drug is probably due to the binding of some large ribosomal units to the membranes of the endoplasmic reticulum (J.-E. Edstrom and u. Lonn. 1976. J. Cell Biol. 70:562-572, and U. Lonn and J.-E. Edstrom. 1976. J. Cell. Biol. 70:573-580). If growth is inhibited by starvation, only the puromycin-sensitive type gradient is observed for the large subunit, suggesting that the attachment of these newly made subunits to the endoplasmic reticulum membranes will not occur. If, on the other hand, the drug-resistant gradient is allowed to form in feeding animals, it is conserved during a subsequent starvation for longer periods than in control feeding animals. This observation provides a further support for an effect of starvation on the normal turnover of the large subunits associated with the endoplasmic reticulum. These results also indicate a considerable structural stability in the cytoplasm of these cells worth little or no gross redistribution of cytoplasmic structures over a period of at least 6 days.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1687-1699
Author(s):  
Jesús de la Cruz ◽  
Thierry Lacombe ◽  
Olivier Deloche ◽  
Patrick Linder ◽  
Dieter Kressler

Abstract Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele.


2012 ◽  
Vol 23 (19) ◽  
pp. 3801-3813 ◽  
Author(s):  
Batbileg Bor ◽  
Christina L. Vizcarra ◽  
Martin L. Phillips ◽  
Margot E. Quinlan

Formins are a conserved family of proteins known to enhance actin polymerization. Most formins are regulated by an intramolecular interaction. The Drosophila formin, Cappuccino (Capu), was believed to be an exception. Capu does not contain conserved autoinhibitory domains and can be regulated by a second protein, Spire. We report here that Capu is, in fact, autoinhibited. The N-terminal half of Capu (Capu-NT) potently inhibits nucleation and binding to the barbed end of elongating filaments by the C-terminal half of Capu (Capu-CT). Hydrodynamic analysis indicates that Capu-NT is a dimer, similar to the N-termini of other formins. These data, combined with those from circular dichroism, suggest, however, that it is structurally distinct from previously described formin inhibitory domains. Finally, we find that Capu-NT binds to a site within Capu-CT that overlaps with the Spire-binding site, the Capu-tail. We propose models for the interaction between Spire and Capu in light of the fact that Capu can be regulated by autoinhibition.


1991 ◽  
Vol 69 (1) ◽  
pp. 5-22 ◽  
Author(s):  
D. E. Larson ◽  
P. Zahradka ◽  
B. H. Sells

Ribosome biogenesis in eucaryotic cells involves the coordinated synthesis of four rRNA species, transcribed by RNA polymerase I (18S, 28S, 5.8S) and RNA polymerase III (5S), and approximately 80 ribosomal proteins translated from mRNAs synthesized by RNA polymerase II. Assembly of the ribosomal subunits in the nucleolus, the site of 45S rRNA precursor gene transcription, requires the movement of 5S rRNA and ribosomal proteins from the nucleoplasm and cytoplasm, respectively, to this structure. To integrate these events and ensure the balanced production of individual ribosomal components, different strategies have been developed by eucaryotic organisms in response to a variety of physiological changes. This review presents an overview of the mechanisms modulating the production of ribosomal precursor molecules and the rate of ribosome biogenesis in various biological systems.Key words: rRNA, ribosomal proteins, nucleolus, ribosome.


2021 ◽  
Vol 478 (5) ◽  
pp. 997-1008
Author(s):  
Dmitri Graifer ◽  
Galina Karpova

Proteins belonging to the universal ribosomal protein (rp) uS19 family are constituents of small ribosomal subunits, and their conserved globular parts are involved in the formation of the head of these subunits. The eukaryotic rp uS19 (previously known as S15) comprises a C-terminal extension that has no homology in the bacterial counterparts. This extension is directly implicated in the formation of the ribosomal decoding site and thereby affects translational fidelity in a manner that has no analogy in bacterial ribosomes. Another eukaryote-specific feature of rp uS19 is its essential participance in the 40S subunit maturation due to the interactions with the subunit assembly factors required for the nuclear exit of pre-40S particles. Beyond properties related to the translation machinery, eukaryotic rp uS19 has an extra-ribosomal function concerned with its direct involvement in the regulation of the activity of an important tumor suppressor p53 in the Mdm2/Mdmx-p53 pathway. Mutations in the RPS15 gene encoding rp uS19 are linked to diseases (Diamond Blackfan anemia, chronic lymphocytic leukemia and Parkinson's disease) caused either by defects in the ribosome biogenesis or disturbances in the functioning of ribosomes containing mutant rp uS19, likely due to the changed translational fidelity. Here, we review currently available data on the involvement of rp uS19 in the operation of the translational machinery and in the maturation of 40S subunits, on its extra-ribosomal function, and on relationships between mutations in the RPS15 gene and certain human diseases.


2000 ◽  
Vol 149 (7) ◽  
pp. 1419-1432 ◽  
Author(s):  
Ute Schaeper ◽  
Niels H. Gehring ◽  
Klaus P. Fuchs ◽  
Martin Sachs ◽  
Bettina Kempkes ◽  
...  

Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met–specific branching morphogenesis. It associates directly with c-Met via the c-Met–binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse yeast two-hybrid technology. The c-Met–binding site is localized to a 13–amino acid region unique to Gab1. Insertion of this site into the Gab1-related protein p97/Gab2 was sufficient to confer c-Met–binding activity. Association with Grb2 was mapped to two sites: a classical SH3-binding site (PXXP) and a novel Grb2 SH3 consensus-binding motif (PX(V/I)(D/N)RXXKP). To detect phosphorylation-dependent interactions of Gab1 with downstream substrates, we developed a modified yeast two-hybrid assay and identified PI(3)K, Shc, Shp2, and CRKL as interaction partners of Gab1. In a trk-met-Gab1–specific branching morphogenesis assay, association of Gab1 with Shp2, but not PI(3)K, CRKL, or Shc was essential to induce a biological response in MDCK cells. Overexpression of a Gab1 mutant deficient in Shp2 interaction could also block HGF/SF-induced activation of the MAPK pathway, suggesting that Shp2 is critical for c-Met/Gab1-specific signaling.


Sign in / Sign up

Export Citation Format

Share Document