scholarly journals Regulating the transition from centriole to basal body

2011 ◽  
Vol 193 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Tetsuo Kobayashi ◽  
Brian D. Dynlacht

The role of centrioles changes as a function of the cell cycle. Centrioles promote formation of spindle poles in mitosis and act as basal bodies to assemble primary cilia in interphase. Stringent regulations govern conversion between these two states. Although the molecular mechanisms have not been fully elucidated, recent findings have begun to shed light on pathways that regulate the conversion of centrioles to basal bodies and vice versa. Emerging studies also provide insights into how defects in the balance between centrosome and cilia function could promote ciliopathies and cancer.

Cell Stress ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 33-36
Author(s):  
Manuela Morleo ◽  
Brunella Franco

The autophagy-lysosomal pathway is one of the main degradative routes which cells use to balance sources of energy. A number of proteins orchestrate the formation of autophagosomes, membranous organelles instrumental in autophagy. Selective autophagy, involving the recognition and removal of specific targets, is mediated by autophagy receptors, which recognize cargos and the autophagosomal membrane protein LC3 for lysosomal degradation. Recently, bidirectional crosstalk has emerged between autophagy and primary cilia, microtubule-based sensory organelles extending from cells and anchored by the basal body, derived from the mother centriole of the centrosome. The molecular mechanisms underlying the direct role of autophagic proteins in cilia biology and, conversely, the impact of this organelle in autophagy remains elusive. Recently, we uncovered the molecular mechanism by which the centrosomal/basal body protein OFD1 controls the LC3-mediated autophagic cascade. In particular, we demonstrated that OFD1 acts as a selective autophagy receptor by regulating the turnover of unc-51-like kinase (ULK1) complex, which plays a crucial role in the initiation steps of autophagosome biogenesis. Moreover, we showed that patients with a genetic condition caused by mutations in OFD1 and associated with cilia dysfunction, display excessive autophagy and we demonstrated that autophagy inhibition significantly ameliorates the renal cystic phenotype in a conditional mouse model recapitulating the features of the disease (Morleo et al. 2020, EMBO J, doi: 10.15252/embj.2020105120). We speculate that abnormal autophagy may underlie some of the clinical manifestations observed in the disorders ascribed to cilia dysfunction.


2015 ◽  
Vol 208 (6) ◽  
pp. 693-701 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Ciaran G. Morrison

Primary cilia are antenna-like sensory microtubule structures that extend from basal bodies, plasma membrane–docked mother centrioles. Cellular quiescence potentiates ciliogenesis, but the regulation of basal body formation is not fully understood. We used reverse genetics to test the role of the small calcium-binding protein, centrin2, in ciliogenesis. Primary cilia arise in most cell types but have not been described in lymphocytes. We show here that serum starvation of transformed, cultured B and T cells caused primary ciliogenesis. Efficient ciliogenesis in chicken DT40 B lymphocytes required centrin2. We disrupted CETN2 in human retinal pigmented epithelial cells, and despite having intact centrioles, they were unable to make cilia upon serum starvation, showing abnormal localization of distal appendage proteins and failing to remove the ciliation inhibitor CP110. Knockdown of CP110 rescued ciliation in CETN2-deficient cells. Thus, centrin2 regulates primary ciliogenesis through controlling CP110 levels.


Sarcoma ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Krithi Rao-Bindal ◽  
Eugenie S. Kleinerman

The role of genetic mutations in the development of osteosarcoma, such as alterations in p53 and Rb, is well understood. However, the significance of epigenetic mechanisms in the progression of osteosarcoma remains unclear and is increasingly being investigated. Recent evidence suggests that epigenetic alterations such as methylation and histone modifications of genes involved in cell cycle regulation and apoptosis may contribute to the pathogenesis of this tumor. Importantly, understanding the molecular mechanisms of regulation of these pathways may give insight into novel therapeutic strategies for patients with osteosarcoma. This paper serves to summarize the described epigenetic mechanisms in the tumorigenesis of osteosarcoma, specifically those pertaining to apoptosis and cell cycle regulation.


2019 ◽  
Vol 400 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Peng Sun ◽  
Dan Zhang ◽  
Haiping Huang ◽  
Yafeng Yu ◽  
Zhendong Yang ◽  
...  

Abstract This study aimed to investigate the role of miRNA-1225-5p (miR-1225) in laryngeal carcinoma (LC). We found that the expression of miR-1225 was suppressed in human LC samples, while CDC14B (cell division cycle 14B) expression was reinforced in comparison with surrounding normal tissues. We also demonstrated that enhanced expression of miR-1225 impaired the proliferation and survival of LC cells, and resulted in G1/S cell cycle arrest. In contrast, reduced expression of miR-1225 promoted cell survival. Moreover, miR-1225 resulted in G1/S cell cycle arrest and enhanced cell death. Further, miR-1225 targets CDC14B 3′-UTR and recovery of CDC14B expression counteracted the suppressive influence of miR-1225 on LC cells. Thus, these findings offer insight into the biological and molecular mechanisms behind the development of LC.


We have analysed the timing and order of events occurring within the cell division cycle of Trypanosoma brucei . Cells in the earliest stages of the cell cycle possess a single copy of three major organelles: the nucleus, the kinetoplast and the flagellum. The first indication of progress through the cell cycle is the elongation of the pro-basal body lying adjacent to the mature basal body subtending the flagellum. This newly elongated basal body occupies a posterior position within the cell when it initiates growth of the new daughter flagellum. Genesis of two new pro-basal bodies occurs only after growth of the new daughter flagellum has been initiated. Extension of the new flagellum, together with the paraflagellar rod, then continues throughout a major portion of the cell cycle. During this period of flagellum elongation, kinetoplast division occurs and the two kinetoplasts, together with the two flagellar basal bodies, then move apart within the cell. Mitosis is then initiated and a complex pattern of organelle positions is achieved whereby a division plane runs longitudinally through the cell such that each daughter ultimately receives a single nucleus, kinetoplast and flagellum. These events have been described from observations of whole cytoskeletons by transmission electron microscopy together with detection of particular organelles by fluorescence microscopy. The order and timing of events within the cell cycle has been derived from analyses of the proportion of a given cell type occurring within an exponentially growing culture.


mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Westley Heydeck ◽  
Alexander J. Stemm-Wolf ◽  
Janin Knop ◽  
Christina C. Poh ◽  
Mark Winey

ABSTRACT Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.


2000 ◽  
Author(s):  
Gideon Grafi ◽  
Brian Larkins

The focus of this research project is to investigate the role of endoreduplication in maize endosperm development and the extent to which this process contributes to high levels of starch and storage protein synthesis. Although endoreduplication has been widely observed in many cells and tissues, especially those with high levels of metabolic activity, the molecular mechanisms through which the cell cycle is altered to produce consecutive cycles of S-phase without an intervening M-phase are unknown. Our previous research has shown that changes in the expression of several cell cycle regulatory genes coincide with the onset of endoreduplication. During this process, there is a sharp reduction in the activity of the mitotic cyclin-dependent kinase (CDK) and activation of the S-phase CDK. It appears the M-phase CDK is stable, but its activity is blocked by a proteinaceous inhibitor. Coincidentally, the S-phase checkpoint protein, retinoblastoma (ZmRb), becomes phosphorylated, presumably releasing an E2F-type transcriptional regulator which promotes the expression of genes responsible for DNA synthesis. To investigate the role of these cell cycle proteins in endoreduplication, we have created transgenic maize plants that express various genes in an endosperm-specific manner using a storage protein (g-zein) promoter. During the first year of the grant, we constructed point mutations of the maize M-phase kinase, p34cdc2. One alteration replaced aspartic acid at position 146 with asparagine (p3630-CdcD146N), while another changed threonine 161 to alanine (p3630-CdcT161A). These mutations abolish the activity of the CDK. We hypothesized that expression of the mutant forms of p34cdc2 in endoreduplicating endosperm, compared to a control p34cdc2, would lead to extra cycles of DNA synthesis. We also fused the gene encoding the regulatory subunit of the M- phase kinase, cyclin B, under the g-zein promoter. Normally, cyclin B is expected to be destroyed prior to the onset of endoreduplication. By producing high levels of this protein in developing endosperm, we hypothesized that the M-phase would be extended, potentially reducing the number of cycles of endoreduplication. Finally, we genetically engineered the wheat dwarf virus RepA protein for endosperm-specific expression. RepA binds to the maize retinoblastoma protein and presumably releases E2F-like transcription factors that activate DNA synthesis. We anticipated that inactivation of ZmRb by RepA would lead to additional cycles of DNA synthesis.


2018 ◽  
Author(s):  
Alethia Villasenor ◽  
Sébastien Gauvrit ◽  
Michelle M. Collins ◽  
Silvia Parajes ◽  
Hans-Martin Maischein ◽  
...  

SUMMARYSignificant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms necessary to direct endodermal progenitors towards the HPD fate and also advance our understanding of HPD system formation.


2018 ◽  
Author(s):  
Sandrine Morlot ◽  
Song Jia ◽  
Isabelle Léger-Silvestre ◽  
Audrey Matifas ◽  
Olivier Gadal ◽  
...  

SummaryThe accumulation of Extrachromosomal rDNA Circles (ERCs) and their asymmetric segregation upon division have been hypothesized to be responsible for replicative senescence in mother yeasts and rejuvenation in daughter cells. However, it remains unclear by which molecular mechanisms ERCs would trigger the irreversible cell cycle slow-down leading to cell death. We show that ERCs accumulation is concomitant with a nucleolar stress, characterized by a massive accumulation of pre-rRNAs in the nucleolus, leading to a loss of nucleus-to-cytoplasm ratio, decreased growth rate and cell-cycle slow-down. This nucleolar stress, observed in old mothers, is not inherited by rejuvenated daughters. Unlike WT, in the long-lived mutant fob1∆, a majority of cells is devoid of nucleolar stress and does not experience replicative senescence before death. Our study provides a unique framework to order the successive steps that govern the transition to replicative senescence and highlights the causal role of nucleolar stress in cellular aging.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4393-4393
Author(s):  
Edgar G. Rizzatti ◽  
Helena Mora-Jensen ◽  
Elinor Lee ◽  
Yuji Miura ◽  
Raymond Lai ◽  
...  

Abstract Mantle cell lymphoma (MCL), characterized by a t(11;14) translocation that results in up-regulation of cyclin D1, is incurable with standard chemotherapy. Recent phase II studies have shown that bortezomib (BZM), an inhibitor of the proteasome, can induce responses in about 50% of pre-treated MCL patients. However, the molecular mechanisms that mediate either chemosensitivity or resistance to BZM in MCL remain largely unknown. In this study, we used a panel of MCL cell lines to investigate molecular mechanisms of response to BZM. In 11 MCL cell lines we found a bimodal pattern of chemosensitivity to BZM; the resistant group, REC-1, Mino, and NCEB-1, had an IC50>10nM (median 12.9 nM), while the sensitive group, Granta-519, JVM-2, Jeko-1, HBL-2, UPN1, SP-53, SP-49, and Z-138, had an IC50<10nM (median 5.9nM). No correlation between BZM resistance and p53 mutations was apparent, arguing against a role for this common chemotherapy resistance mechanism. To test whether the differences in sensitivity to BZM might be mediated by drug export mechanisms we measured P-gp activity using the rhodamine efflux assay. We found that more than 50% of the REC-1 (resistant), SP-53, and SP-49 cells (both sensitive) excluded the rhodamine dye, while all other cell lines showed only minimal or no activity, arguing against a role of P-gp in BZM resistance. To determine whether high proteasome activity or reduced sensitivity of the proteasome to inhibition could cause resistance to BZM we quantified proteasome activity by measuring the cleavage of the labeled substrate LLVY-AMC. Basal proteasome activity was comparable except in the sensitive cell line JVM-2, which had an activity 71% higher than the second highest; dose dependent inhibition was similar in all cell lines. BZM can interfere with components of the NFkB pathway, and this effect has been proposed to mediate cytotoxicity in MCL. We measured the relative activation of the NFkB pathway by quantifying p50, p52, p65, c-Rel and Rel-B nuclear factors with an ELISA assay. Cell lines with high and low expressions of NFkB nuclear factors were equally sensitive, arguing against a major role for this pathway in determining sensitivity to BZM. Heat shock proteins (Hsp) have been reported to confer resistance to BZM in lymphoid cell lines. However, in our hands, Hsp27, Hsp70 and Hsp90 were equally expressed between resistant and sensitive cells, and there was no consistent pattern of regulation of these proteins in response to BZM. Recently, NOXA has been reported to mediate BZM induced apoptosis. Indeed, all cell lines showed up-regulation of protein levels of NOXA when exposed to BZM in excess of their IC50 concentrations, suggesting that determinants of resistance are upstream of NOXA. Given the cardinal role of cyclin D1 in MCL, we hypothesized that effects on cell cycle control could be responsible for chemosensitivity. Upon BZM exposure sensitive cells were arrested in G2/M, whereas resistant cell lines either accumulated in G1 (Mino) or, at higher concentrations, underwent apoptosis without arresting in any specific phase. We conclude that BZM can overcome conventional mechanisms of drug resistance and that an effect on cell cycle control may determine BZM activity in MCL.


Sign in / Sign up

Export Citation Format

Share Document