scholarly journals Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels

2015 ◽  
Vol 209 (5) ◽  
pp. 653-670 ◽  
Author(s):  
Anshul Rana ◽  
Michelle Yen ◽  
Amir Masoud Sadaghiani ◽  
Seth Malmersjö ◽  
Chan Young Park ◽  
...  

Store-operated calcium entry (SOCE) regulates a wide variety of essential cellular functions. SOCE is mediated by STIM1 and STIM2, which sense depletion of ER Ca2+ stores and activate Orai channels in the plasma membrane. Although the amplitude and dynamics of SOCE are considered important determinants of Ca2+-dependent responses, the underlying modulatory mechanisms are unclear. In this paper, we identify STIM2β, a highly conserved alternatively spliced isoform of STIM2, which, in contrast to all known STIM isoforms, is a potent inhibitor of SOCE. Although STIM2β does not by itself strongly bind Orai1, it is recruited to Orai1 channels by forming heterodimers with other STIM isoforms. Analysis of STIM2β mutants and Orai1-STIM2β chimeras suggested that it actively inhibits SOCE through a sequence-specific allosteric interaction with Orai1. Our results reveal a previously unrecognized functional flexibility in the STIM protein family by which alternative splicing creates negative and positive regulators of SOCE to shape the amplitude and dynamics of Ca2+ signals.

2007 ◽  
Vol 35 (5) ◽  
pp. 913-918 ◽  
Author(s):  
M. Brini ◽  
F. Di Leva ◽  
T. Domi ◽  
L. Fedrizzi ◽  
D. Lim ◽  
...  

In mammals, four different genes encode four PMCA (plasma-membrane Ca2+-ATPase) isoforms. PMCA1 and 4 are expressed ubiquitously, and PMCA2 and 3 are expressed predominantly in the central nervous system. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of so many isoforms is not clear, but evidently it must be related to the cell-specific demands of Ca2+ homoeostasis. Recent studies suggest that the alternatively spliced regions in PMCA are responsible for specific targeting to plasma membrane domains, and proteins that bind specifically to the pumps could contribute to further regulation of Ca2+ control. In addition, the combination of proteins obtained by alternative splicing occurring at two different sites could be responsible for different functional characteristics of the pumps.


2001 ◽  
Vol 280 (4) ◽  
pp. F574-F582 ◽  
Author(s):  
Consuelo Plata ◽  
Patricia Meade ◽  
Amy Hall ◽  
Rick C. Welch ◽  
Norma Vázquez ◽  
...  

In the absence of vasopressin, medullary thick ascending limb cells express a K+-independent, furosemide-sensitive Na+-Cl− cotransporter that is inhibited by hypertonicity. The murine renal specific Na+-K+-2 Cl− cotransporter gene ( SLC12A1) gives rise to six alternatively spliced isoforms. Three feature a long COOH-terminal domain that encodes the butmetanide-sensitive Na+-K+-2 Cl−cotransporter (BSC1–9/NKCC2), and three with a short COOH-terminal domain, known as mBSC1-A4, B4, or F4 (19). Here we have determined the functional characteristics of mBSC1-A4, as expressed in Xenopus laevis oocytes. When incubated at normal oocyte osmolarity (∼200 mosmol/kgH2O), mBSC1–4-injected oocytes do not express significant Na+ uptake over H2O-injected controls, and immunohistochemical analysis shows that the majority of mBSC1–4 protein is in the oocyte cytoplasm and not at the plasma membrane. In contrast, when mBSC1–4 oocytes are exposed to hypotonicity (∼100 mosmol/kgH2O), a significant increase in Na+uptake but not in 86Rb+ uptake is observed. The increased Na+ uptake is Cl− dependent, furosemide sensitive, and cAMP sensitive but K+independent. Sodium uptake increases with decreasing osmolarity between 120 and 70 mosmol/kgH2O ( r = 0.95, P < 0.01). Immunohistochemical analysis shows that in hypotonic conditions mBSC1-A4 protein is expressed in the plasma membrane. These studies indicate that the mBSC1-A4 isoform of the SLC12A1 gene encodes a hypotonically activated, cAMP- and furosemide-sensitive Na+-Cl− cotransporter. Thus it is possible that alternative splicing of the BSC1 gene could provide the molecular mechanism enabling the Na+-Cl−-to-Na+-K+-2Cl−switching in thick ascending limb cells.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2518
Author(s):  
Valentina Tedeschi ◽  
Daniele La Russa ◽  
Cristina Franco ◽  
Antonio Vinciguerra ◽  
Diana Amantea ◽  
...  

Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
E. Agirre ◽  
A. J. Oldfield ◽  
N. Bellora ◽  
A. Segelle ◽  
R. F. Luco

AbstractAlternative splicing relies on the combinatorial recruitment of splicing regulators to specific RNA binding sites. Chromatin has been shown to impact this recruitment. However, a limited number of histone marks have been studied at a global level. In this work, a machine learning approach, applied to extensive epigenomics datasets in human H1 embryonic stem cells and IMR90 foetal fibroblasts, has identified eleven chromatin modifications that differentially mark alternatively spliced exons depending on the level of exon inclusion. These marks act in a combinatorial and position-dependent way, creating characteristic splicing-associated chromatin signatures (SACS). In support of a functional role for SACS in coordinating splicing regulation, changes in the alternative splicing of SACS-marked exons between ten different cell lines correlate with changes in SACS enrichment levels and recruitment of the splicing regulators predicted by RNA motif search analysis. We propose the dynamic nature of chromatin modifications as a mechanism to rapidly fine-tune alternative splicing when necessary.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1517-1529 ◽  
Author(s):  
James M Burnette ◽  
Allyson R Hatton ◽  
A Javier Lopez

Abstract Alternatively spliced Ultrabithorax mRNAs differ by the presence of internal exons mI and mII. Two approaches were used to identify trans-acting factors required for inclusion of these cassette exons. First, mutations in a set of genes implicated in the control of other alternative splicing decisions were tested for dominant effects on the Ubx alternative splicing pattern. To identify additional genes involved in regulation of Ubx splicing, a large collection of deficiencies was tested first for dominant enhancement of the haploinsufficient Ubx haltere phenotype and second for effects on the splicing pattern. Inclusion of the cassette exons in Ubx mRNAs was reduced strongly in heterozygotes for hypomorphic alleles of hrp48, which encodes a member of the hnRNP A/B family and is implicated in control of P-element splicing. Significant reductions of mI and mII inclusion were also observed in heterozygotes for loss-of-function alleles of virilizer, fl(2)d, and crooked neck. The products of virilizer and fl(2)d are also required for Sxl autoregulation at the level of splicing; crooked neck encodes a protein with structural similarities to yeast-splicing factors Prp39p and Prp42p. Deletion of at least five other loci caused significant reductions in the inclusion of mI and/or mII. Possible roles of identified factors are discussed in the context of the resplicing strategy for generation of alternative Ubx mRNAs.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1407-1426 ◽  
Author(s):  
Lee A Smith ◽  
Alexandre A Peixoto ◽  
Elena M Kramer ◽  
Adriana Villella ◽  
Jeffrey C Hall

Abstract We show by molecular analysis of behavioral and physiological mutants that the Drosophila Dmca1A calcium-channel α1 subunit is encoded by the cacophony (cac) gene and that nightblind-A and lethal(1)L13 mutations are allelic to cac with respect to an expanded array of behavioral and physiological phenotypes associated with this gene. The cacS mutant, which exhibits defects in the patterning of courtship lovesong and a newly revealed but subtle abnormality in visual physiology, is mutated such that a highly conserved phenylalanine (in one of the quasi-homologous intrapolypeptide regions called IIIS6) is replaced by isoleucine. The cacH18 mutant exhibits defects in visual physiology (including complete unresponsiveness to light in certain genetic combinations) and visually mediated behaviors; this mutant (originally nbAH18) has a stop codon in an alternative exon (within the cac ORF), which is differentially expressed in the eye. Analysis ofthe various courtship and visual phenotypes associated with this array ofcac mutants demonstrates that Dmca1A calcium channels mediate multiple, separable biological functions; these correlate in part with transcript diversity generated via alternative splicing.


2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


Open Biology ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 150063 ◽  
Author(s):  
Stephen Short ◽  
Tessa Peterkin ◽  
Matthew Guille ◽  
Roger Patient ◽  
Colin Sharpe

Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus , alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment.


Sign in / Sign up

Export Citation Format

Share Document