scholarly journals Sorting the trash: Micronucleophagy gets selective

2018 ◽  
Vol 217 (8) ◽  
pp. 2605-2607
Author(s):  
Pauline Verlhac ◽  
Fulvio Reggiori

During micronucleophagy, the nucleolus is targeted by autophagic degradation, but although nucleolar proteins are recycled, ribosomal DNA is spared. Mostofa et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706164) reveal that the separation of these two nucleolar components is mediated by the CLIP and cohibin complexes and is vital for cell survival during starvation.

2018 ◽  
Vol 217 (8) ◽  
pp. 2675-2690 ◽  
Author(s):  
Md. Golam Mostofa ◽  
Muhammad Arifur Rahman ◽  
Naoki Koike ◽  
Akter MST Yeasmin ◽  
Nafisa Islam ◽  
...  

Nutrient starvation or inactivation of target of rapamycin complex 1 (TORC1) in budding yeast induces nucleophagy, a selective autophagy process that preferentially degrades nucleolar components. DNA, including ribosomal DNA (rDNA), is not degraded by nucleophagy, even though rDNA is embedded in the nucleolus. Here, we show that TORC1 inactivation promotes relocalization of nucleolar proteins and rDNA to different sites. Nucleolar proteins move to sites proximal to the nuclear–vacuolar junction (NVJ), where micronucleophagy (or piecemeal microautophagy of the nucleus) occurs, whereas rDNA dissociates from nucleolar proteins and moves to sites distal to NVJs. CLIP and cohibin, which tether rDNA to the inner nuclear membrane, were required for repositioning of nucleolar proteins and rDNA, as well as effective nucleophagic degradation of the nucleolar proteins. Furthermore, micronucleophagy itself was necessary for the repositioning of rDNA and nucleolar proteins. However, rDNA escaped from nucleophagic degradation in CLIP- or cohibin-deficient cells. This study reveals that rDNA–nucleolar protein separation is important for the nucleophagic degradation of nucleolar proteins.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Elias Bou Samra ◽  
Géraldine Buhagiar-Labarchède ◽  
Christelle Machon ◽  
Jérôme Guitton ◽  
Rosine Onclercq-Delic ◽  
...  

2017 ◽  
Vol 216 (7) ◽  
pp. 1883-1885 ◽  
Author(s):  
Kathrin Maedler ◽  
Amin Ardestani

The pathways regulating pancreatic β cell survival in diabetes are poorly understood. Here, Chau et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701085) demonstrate that mTOR regulates the apoptotic machinery through binding to the ChREBP–Mlx complex to suppress TXNIP, thereby protecting pancreatic β cells in the diabetic setting by inhibiting oxidative stress and mitochondrial dysfunction.


2005 ◽  
Vol 171 (4) ◽  
pp. 603-614 ◽  
Author(s):  
Geir Bjørkøy ◽  
Trond Lamark ◽  
Andreas Brech ◽  
Heidi Outzen ◽  
Maria Perander ◽  
...  

Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and coimmunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.


1995 ◽  
Vol 6 (9) ◽  
pp. 1103-1110 ◽  
Author(s):  
T Kadowaki ◽  
R Schneiter ◽  
M Hitomi ◽  
A M Tartakoff

Synthesis of mRNA and rRNA occur in the chromatin-rich nucleoplasm and the nucleolus, respectively. Nevertheless, we here report that a Saccharomyces cerevisiae gene, MTR3, previously implicated in mRNA transport, codes for a novel essential 28-kDa nucleolar protein. Moreover, in mtr3-1 the accumulated polyA+ RNA actually colocalizes with nucleolar antigens, the nucleolus becomes somewhat disorganized, and rRNA synthesis and processing are inhibited. A strain with a ts conditional mutation in RNA polymerase I also shows nucleolar accumulation of polyA+ RNA, whereas strains with mutations in the nucleolar protein Nop1p do not. Thus, in several mutant backgrounds, when mRNA cannot be exported i concentrates in the nucleolus. mRNA may normally encounter nucleolar components before export and proteins such as Mtr3p may be critical for export of both mRNA and ribosomal subunits.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Ogasawara ◽  
Jinglei Cheng ◽  
Tsuyako Tatematsu ◽  
Misaki Uchida ◽  
Omi Murase ◽  
...  

Abstract Macroautophagy initiates by formation of isolation membranes, but the source of phospholipids for the membrane biogenesis remains elusive. Here, we show that autophagic membranes incorporate newly synthesized phosphatidylcholine, and that CTP:phosphocholine cytidylyltransferase β3 (CCTβ3), an isoform of the rate-limiting enzyme in the Kennedy pathway, plays an essential role. In starved mouse embryo fibroblasts, CCTβ3 is initially recruited to autophagic membranes, but upon prolonged starvation, it concentrates on lipid droplets that are generated from autophagic degradation products. Omegasomes and isolation membranes emanate from around those lipid droplets. Autophagy in prolonged starvation is suppressed by knockdown of CCTβ3 and is enhanced by its overexpression. This CCTβ3-dependent mechanism is also present in U2OS, an osteosarcoma cell line, and autophagy and cell survival in starvation are decreased by CCTβ3 depletion. The results demonstrate that phosphatidylcholine synthesis through CCTβ3 activation on lipid droplets is crucial for sustaining autophagy and long-term cell survival.


2017 ◽  
Vol 114 (6) ◽  
pp. 1335-1340 ◽  
Author(s):  
Hanieh Falahati ◽  
Eric Wieschaus

Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli ofDrosophila melanogasterembryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision.


2019 ◽  
Vol 218 (2) ◽  
pp. 387-388 ◽  
Author(s):  
Florence Niedergang

Herpes simplex viruses bud into the nuclear membrane of infected cells. Turan et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201801151) demonstrate that mature dendritic cells control the peripheral location of lysosomes, reducing autophagic degradation of lamins and inhibiting viral release.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Sign in / Sign up

Export Citation Format

Share Document