scholarly journals MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane

2019 ◽  
Vol 218 (10) ◽  
pp. 3355-3371 ◽  
Author(s):  
Takuya Miyagawa ◽  
Kana Hasegawa ◽  
Yoko Aoki ◽  
Takuya Watanabe ◽  
Yuka Otagiri ◽  
...  

Metastasis is a major cause of cancer-related death. Membrane type 1–matrix metalloproteinase (MT1-MMP) is a critical protease for local invasion and metastasis. MT1-MMP is synthesized in the endoplasmic reticulum (ER) and transported in vesicles to invadopodia, specialized subdomains of the plasma membrane, through secretory and endocytic recycling pathways. The molecular mechanism underlying intracellular transport of MT1-MMP has been extensively studied, but is not fully understood. We show that MT1-MMP diverts the SNARE Bet1 from its function in ER-Golgi transport, to promote MT1-MMP trafficking to the cell surface, likely to invadopodia. In invasive cells, Bet1 is localized in MT1-MMP–positive endosomes in addition to the Golgi apparatus, and forms a novel SNARE complex with syntaxin 4 and endosomal SNAREs. MT1-MMP may also use Bet1 for its export from raft-like structures in the ER. Our results suggest the recruitment of Bet1 at an early stage after MT1-MMP expression promotes the exit of MT1-MMP from the ER and its efficient transport to invadopodia.

1990 ◽  
Vol 110 (4) ◽  
pp. 973-986 ◽  
Author(s):  
T Wileman ◽  
G R Carson ◽  
M Concino ◽  
A Ahmed ◽  
C Terhorst

The T cell receptor for antigen (TCR) is composed of six different transmembrane proteins. T cells carefully control the intracellular transport of the receptor and allow only complete receptors to reach the plasma membrane. In an attempt to understand how T cells regulate this process, we used c-DNA transfection and subunit-specific antibodies to follow the intracellular transport of five subunits (alpha beta gamma delta epsilon) of the receptor. In particular, we assessed the intracellular stability of each chain. Our results showed that the chains were markedly different in their susceptibility to intracellular degradation. TCR alpha and beta and CD3 delta were degraded rapidly, whereas CD3 gamma and epsilon were stable. An analysis of the N-linked oligosaccharides of the glycoprotein subunits suggested that the chains were unable to reach the medial Golgi during the metabolic chase. This was supported by immunofluorescence micrographs that showed both the stable CD3 gamma and unstable CD3 delta chain localized in the endoplasmic reticulum. To study the effects of subunit associations on intracellular transport we used cotransfection to reconstitute precise combinations of subunits. Associations between stable and unstable subunits expressed in the same cell led to the formation of stable complexes. These complexes were retained in or close to the endoplasmic reticulum. The results suggested that the intracellular transport of the T cell receptor could be regulated by two mechanisms. The TCR alpha and beta and CD3 delta subunits were degraded rapidly and as a consequence failed to reach the plasma membrane. CD3 gamma or epsilon were stable but were retained inside the cell. The results also demonstrated that there was an interplay between the two pathways such that the CD3 gamma and epsilon subunits were able to protect labile chains from rapid intracellular degradation. In this way, they could seed subunit assembly in or close to the endoplasmic reticulum and allow a stable receptor to form before its transport to the plasma membrane.


2001 ◽  
Vol 357 (3) ◽  
pp. 625-634 ◽  
Author(s):  
Philip WASHBOURNE ◽  
Victor CANSINO ◽  
James R. MATHEWS ◽  
Margaret GRAHAM ◽  
Robert D. BURGOYNE ◽  
...  

The release of neurotransmitter at a synapse occurs via the regulated fusion of synaptic vesicles with the plasma membrane. The fusion of the two lipid bilayers is mediated by a protein complex that includes the plasma membrane target soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (t-SNAREs), syntaxin 1A and synaptosome-associated protein of 25kDa (SNAP-25), and the vesicle SNARE (v-SNARE), vesicle-associated membrane protein (VAMP). Whereas syntaxin 1A and VAMP are tethered to the membrane by a C-terminal transmembrane domain, SNAP-25 has been suggested to be anchored to the membrane via four palmitoylated cysteine residues. We demonstrate that the cysteine residues of SNAP-25 are not required for membrane localization when syntaxin 1A is present. Analysis of the 7S and 20S complexes formed by mutants that lack cysteine residues demonstrates that the cysteines are required for efficient SNARE complex dissociation. Furthermore, these mutants are unable to support exocytosis, as demonstrated by a PC12 cell secretion assay. We hypothesize that syntaxin 1A serves to direct newly synthesized SNAP-25 through the Golgi transport pathway to the axons and synapses, and that palmitoylation of cysteine residues is not required for targeting, but to optimize interactions required for SNARE complex dissociation.


2009 ◽  
Vol 297 (2) ◽  
pp. F292-F300 ◽  
Author(s):  
Abinash C. Mistry ◽  
Rickta Mallick ◽  
Janet D. Klein ◽  
Thomas Weimbs ◽  
Jeff M. Sands ◽  
...  

Proper targeting of the aquaporin-2 (AQP2) water channel to the collecting duct apical plasma membrane is critical for the urine concentrating mechanism and body water homeostasis. However, the trafficking mechanisms that recruit AQP2 to the plasma membrane are still unclear. Snapin is emerging as an important mediator in the initial interaction of trafficked proteins with target soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (t-SNARE) proteins, and this interaction is functionally important for AQP2 regulation. We show that in AQP2-Madin-Darby canine kidney cells subjected to adenoviral-mediated expression of both snapin and syntaxins, the association of AQP2 with both syntaxin-3 and syntaxin-4 is highly enhanced by the presence of snapin. In pull-down studies, snapin detected AQP2, syntaxin-3, syntaxin-4, and SNAP23 from the inner medullary collecting duct. AQP2 transport activity, as probed by AQP2's urea permeability, was greatly enhanced in oocytes that were coinjected with cRNAs of SNARE components (snapin+syntaxin-3+SNAP23) over those injected with AQP2 cRNA alone. It was not enhanced when syntaxin-3 was replaced by syntaxin-4 (snapin+syntaxin-4+SNAP23). On the other hand, the latter combination significantly enhanced the transport activity of the related AQP3 water channel while the presence of syntaxin-3 did not. This AQP-syntaxin interaction agrees with the polarity of these proteins' expression in the inner medullary collecting duct epithelium. Thus our findings suggest a selectivity of interactions between different aquaporin and syntaxin isoforms, and thus in the regulation of AQP2 and AQP3 activities in the plasma membrane. Snapin plays an important role as a linker between the water channel and the t-SNARE complex, leading to the fusion event, and the pairing with specific t-SNAREs is essential for the specificity of membrane recognition and fusion.


1994 ◽  
Vol 127 (6) ◽  
pp. 1575-1588 ◽  
Author(s):  
O Martinez ◽  
A Schmidt ◽  
J Salaméro ◽  
B Hoflack ◽  
M Roa ◽  
...  

Rab6 is a ubiquitous ras-like GTP-binding protein associated with the membranes of the Golgi complex (Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. 1990. Nature (Lond.). 345:553-556; Antony, C., C. Cibert, G. Géraud, A. Santa Maria, B. Maro, V. Mayau, and B. Goud. 1992. J. Cell Sci. 103: 785-796). We have transiently overexpressed in mouse L cells and human HeLa cells wild-type rab6, GTP (rab6 Q72L), and GDP (rab6 T27N) -bound mutants of rab6 and analyzed the intracellular transport of a soluble secreted form of alkaline phosphatase (SEAP) and of a plasma membrane protein, the hemagglutinin protein (HA) of influenza virus. Over-expression of wild-type rab6 and rab6 Q72L greatly reduced transport of both markers between cis/medial (alpha-mannosidase II positive) and late (sialyl-transferase positive) Golgi compartments, without affecting transport from the endoplasmic reticulum (ER) to cis/medial-Golgi or from the trans-Golgi network (TGN) to the plasma membrane. Whereas overexpression of rab6 T27N did not affect the individual steps of transport between ER and the plasma membrane, it caused an apparent delay in secretion, most likely due to the accumulation of the transport markers in late Golgi compartments. Overexpression of both rab6 Q72L and rab6 T27N altered the morphology of the Golgi apparatus as well as that of the TGN, as assessed at the immunofluorescence level with several markers. We interpret these results as indicating that rab6 controls intra-Golgi transport, either acting as an inhibitor in anterograde transport or as a positive regulator of retrograde transport.


1984 ◽  
Vol 99 (3) ◽  
pp. 1101-1109 ◽  
Author(s):  
A A Rogalski ◽  
J E Bergmann ◽  
S J Singer

We studied the effects of changes in microtubule assembly status upon the intracellular transport of an integral membrane protein from the rough endoplasmic reticulum to the plasma membrane. The protein was the G glycoprotein of vesicular stomatitis virus in cells infected with the Orsay-45 temperature-sensitive mutant of the virus; the synchronous intracellular transport of the G protein could be initiated by a temperature shift-down protocol. The intracellular and surface-expressed G protein were separately detected and localized in the same cells at different times after the temperature shift, by double-immunofluorescence microscopic measurements, and the extent of sialylation of the G protein at different times was quantitated by immunoprecipitation and SDS PAGE of [35S]methionine-labeled cell extracts. Neither complete disassembly of the cytoplasmic microtubules by nocodazole treatment, nor the radical reorganization of microtubules upon taxol treatment, led to any perceptible changes in the rate or extent of G protein sialylation, nor to any marked changes in the rate or extent of surface appearance of the G protein. However, whereas in control cells the surface expression of G was polarized, at membrane regions in juxtaposition to the perinuclear compact Golgi apparatus, in cells with disassembled microtubules the surface expression of the G protein was uniform, corresponding to the intracellular dispersal of the elements of the Golgi apparatus. The mechanisms of transfer of integral proteins from the rough endoplasmic reticulum to the Golgi apparatus, and from the Golgi apparatus to the plasma membrane, are discussed in the light of these observations, and compared with earlier studies of the intracellular transport of secretory proteins.


Sign in / Sign up

Export Citation Format

Share Document