scholarly journals DNA replication and mitotic entry: A brake model for cell cycle progression

2019 ◽  
Vol 218 (12) ◽  
pp. 3892-3902 ◽  
Author(s):  
Bennie Lemmens ◽  
Arne Lindqvist

The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.

2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


1994 ◽  
Vol 125 (4) ◽  
pp. 705-719 ◽  
Author(s):  
S Kornbluth ◽  
M Dasso ◽  
J Newport

TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP-bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.


Author(s):  
Deniz Pirincci Ercan ◽  
Frank Uhlmann

AbstractThe cell cycle is an ordered series of events by which cells grow and divide to give rise to two daughter cells. In eukaryotes, cyclin–cyclin-dependent kinase (cyclin–Cdk) complexes act as master regulators of the cell division cycle by phosphorylating numerous substrates. Their activity and expression profiles are regulated in time. The budding yeast S. cerevisiae was one of the pioneering model organisms to study the cell cycle. Its genetic amenability continues to make it a favorite model to decipher the principles of how changes in cyclin-Cdk activity translate into the intricate sequence of substrate phosphorylation events that govern the cell cycle. In this chapter, we introduce robust and straightforward methods to analyze cell cycle progression in S. cerevisiae. These techniques can be utilized to describe cell cycle events and to address the effects of perturbations on accurate and timely cell cycle progression.


2016 ◽  
Author(s):  
Eva Herrero ◽  
Sonia Stinus ◽  
Eleanor Bellows ◽  
Peter H Thorpe

AbstractThe polarized partitioning of proteins in cells underlies asymmetric cell division, which is an important driver of development and cellular diversity. Like most cells, the budding yeast Saccharomyces cerevisiae divides asymmetrically to give two distinct daughter cells. This asymmetry mimics that seen in metazoans and the key regulatory proteins are conserved from yeast to human. A well-known example of an asymmetric protein is the transcription factor Ace2, which localizes specifically to the daughter nucleus, where it drives a daughter-specific transcriptional network. We performed a reverse genetic screen to look for regulators of asymmetry based on the Ace2 localization phenotype. We screened a collection of essential genes in order to analyze the effect of core cellular processes in asymmetric cell division. This identified a large number of mutations that are known to affect progression through the cell cycle, suggesting that cell cycle delay is sufficient to disrupt Ace2 asymmetry. To test this model we blocked cells from progressing through mitosis and found that prolonged cell cycle arrest is sufficient to disrupt Ace2 asymmetry after release. We also demonstrate that members of the evolutionary conserved FACT chromatin-remodeling complex are required for both asymmetric and cell cycle-regulated localization of Ace2.


2021 ◽  
Author(s):  
Kathryn W Li ◽  
Ross TA Pedersen ◽  
Michelle S Lu ◽  
David G Drubin

AbstractSome organelles cannot be synthesized anew, so they are segregated into daughter cells during cell division. In Saccharomyces cerevisiae, daughter cells bud from mother cells and are populated by organelles inherited from the mothers. To determine whether this organelle inheritance occurs in a stereotyped manner, we tracked organelles using fluorescence microscopy. We describe a program for organelle inheritance in budding yeast. The cortical endoplasmic reticulum (ER) and peroxisomes are inherited concomitant with bud emergence. Next, vacuoles are inherited in small buds, followed closely by mitochondria. Finally, the nucleus and perinuclear ER are inherited when buds have nearly reached their maximal size. Because organelle inheritance timing correlates with bud morphology, which is coupled to the cell cycle, we tested whether organelle inheritance order is controlled by the cell cycle. By arresting cell cycle progression but allowing continued bud growth, we determined that organelle inheritance still occurs without cell cycle progression past S-phase, and that the general inheritance order is maintained. Thus, organelle inheritance follows a preferred order during polarized cell division, but it is not controlled exclusively by cell cycle signaling.Summary statementOrganelles are interconnected by contact sites, but they must be inherited from mother cells into buds during budding yeast mitosis. We report that this process occurs in a preferred sequence.


Author(s):  
Ye Hong ◽  
Hongtao Zhang ◽  
Anton Gartner

Accurate chromosome segregation requires the removal of all chromatin bridges, which link chromosomes before cell division. When chromatin bridges fail to be removed, cell cycle progression may halt, or cytokinesis failure and ensuing polyploidization may occur. Conversely, the inappropriate severing of chromatin bridges leads to chromosome fragmentation, excessive genome instability at breakpoints, micronucleus formation, and chromothripsis. In this mini-review, we first describe the origins of chromatin bridges, the toxic processing of chromatin bridges by mechanical force, and the TREX1 exonuclease. We then focus on the abscission checkpoint (NoCut) which can confer a transient delay in cytokinesis progression to facilitate bridge resolution. Finally, we describe a recently identified mechanism uncovered in C. elegans where the conserved midbody associated endonuclease LEM-3/ANKLE1 is able to resolve chromatin bridges generated by various perturbations of DNA metabolism at the final stage of cell division. We also discuss how LEM-3 dependent chromatin bridge resolution may be coordinated with abscission checkpoint (NoCut) to achieve an error-free cleavage, therefore acting as a “last chance saloon” to facilitate genome integrity and organismal survival.


Sign in / Sign up

Export Citation Format

Share Document