scholarly journals NUCLEOSIDE PHOSPHATASE AND CHOLINESTERASE ACTIVITIES IN DORSAL ROOT GANGLIA AND PERIPHERAL NERVE

1966 ◽  
Vol 29 (3) ◽  
pp. 525-545 ◽  
Author(s):  
Alex B. Novikoff ◽  
Nelson Quintana ◽  
Humberto Villaverde ◽  
Regina Forschirm

In dorsal root ganglia and peripheral nerve of the rat and other species, nucleoside phosphatase and unspecific cholinesterase reaction products are found in the plasma membranes and spaces between them at two sites: (1) Schwann cell-axon interfaces and mesaxons of unmyelinated fibers, and (2) sheath cell-perikaryon interfaces and interfaces between adjacent sheath cells. Acetylcholinesterase reaction product is found in the perikaryon (within the endoplasmic reticulum) and the axon (axoplasmic surface). Nucleoside phosphatase reaction product is also found in the numerous vacuoles at the surface of perineurium cells, ganglion sheath cells, and cells surrounding some ganglion blood vessels. Nucleoside phosphatase activities in the sections fail to respond, in the manner described for "transport ATPase," to diisopropylphosphofluoridate, sodium and potassium ions, and ouabain. Nucleoside diphosphates are hydrolyzed more slowly than triphosphates in unmyelinated fibers, and are not hydrolyzed at the perikaryon surface. Nucleoside monophosphates are either not hydrolyzed or hydrolyzed very slowly. In contrast to these localizations, which are believed to demonstrate sites of enzyme activity, it is considered likely that diffusion artifacts account for the nucleoside phosphatase reaction product frequently found along the outer surfaces of myelinated fibers and within vacuoles at the Schwann cell surfaces of these fibers. The diffuse reaction product seen in basement membranes of ganglion and nerve may also be artifact.

2020 ◽  
Author(s):  
Anjali Balakrishnan ◽  
Lauren Belfiore ◽  
Lakshmy Vasan ◽  
Yacine Touahri ◽  
Morgan Stykel ◽  
...  

ABSTRACTSchwann cells are the principal glial cells of the peripheral nervous system, and their development into myelinating glia is critically dependent on MEK/ERK signaling. Ets-domain transcription factors (Etv1, Etv4, Etv5) are common downstream effectors of MEK/ERK signalling, but so far, only Etv1 has been ascribed a role in Schwann cell development, and only in non-myelinating cells. Here, we examined the role of Etv5, which is expressed in Schwann cell precursors, including neural crest cells and satellite glia, in Schwann cell lineage development. We analysed Etv5tm1Kmm mutants (designated Etv5−/−) at embryonic days (E) 12.5, E15.5 and E18.5, focusing on dorsal root ganglia. At these embryonic stages, satellite glia (glutamine synthetase) and Schwann cell markers, including transcriptional regulators (Sox10, Sox9, Tfap2a, Pou3f1) and non-transcription factors (Ngfr, BFABP, GFAP), were expressed in the DRG of wild-type and Etv5−/− embryos. Furthermore, by E18.5, quantification of Sox10+ Schwann cells and NeuN+ neurons revealed that these cells were present in normal numbers in the Etv5−/− dorsal root ganglia. We next performed peripheral nerve injuries at postnatal day 21, revealing that Etv5−/− mice had an enhanced injury response, generating more Sox10+ Schwann cells compared to wild-type animals at five days post-injury. Thus, while Etv5 is not required for Schwann cell development, possibly due to genetic redundancy with Etv1 and/or Etv4, Etv5 is an essential negative regulator of the peripheral nerve injury repair response.SIGNIFICANCE STATEMENTOur study sought to determine whether the ets domain transcription factor, Etv5, plays a role in regulating Schwann cell development and nerve repair. By using an embryonically and postnatally viable hypomorphic Etv5 mutant allele, we demonstrated that Etv5 is not required for the development of Schwann cells or other neural crest derivatives in the dorsal root ganglia, including satellite glia and neurons. Surprisingly, loss of Etv5 had a direct impact on the Schwann cell repair response post-injury, resulting in more Schwann cells populating the distal injured nerve site compared to wild-type animals. Thus, this work describes for the first time a role for Etv5 in regulating the Schwann cell repair response after peripheral nerve injury.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Melissa T. Manners ◽  
Adam Ertel ◽  
Yuzhen Tian ◽  
Seena K. Ajit

2008 ◽  
Vol 34 (5) ◽  
pp. 891-898 ◽  
Author(s):  
Youhua Wang ◽  
Yonghua Liu ◽  
Ying Chen ◽  
Shuxian Shi ◽  
Jing Qin ◽  
...  

2001 ◽  
Vol 96 (1-2) ◽  
pp. 151-156 ◽  
Author(s):  
Dong-Sun Kim ◽  
Chul-Ho Yoon ◽  
Sang-Ji Lee ◽  
So-Yun Park ◽  
Hea-Jin Yoo ◽  
...  

1958 ◽  
Vol 4 (1) ◽  
pp. 107-114 ◽  
Author(s):  
George A. Edwards ◽  
Helmut Ruska ◽  
Étienne de Harven

The peripheral nerve branch innervating the femoral muscles of the common yellow jacket (Vespula carolina) has been found to possess a thick lemnoblast basement membrane and a complex mesaxon. The term "tunicated nerve" is proposed to designate the type of peripheral nerve in which one or several axons are loosely mantled by meandering, cytoplasm-enclosing membranes of the lemnoblast. The peripheral axon courses longitudinally in a groove in the muscle fiber between the plasma membrane of the muscle fiber and a cap formed by lemnoblast and tracheoblast. The junction is characterized by apposition of plasma membranes of axon and muscle fiber, abundant mitochondria, and synaptic vesicles in the axon, and aggregates of "aposynaptic granules" plus mitochondria and endoplasmic reticulum on the muscle side of the synapse. Unlike the vertebrate striated muscle fiber, no complex infolding of the synapsing plasma membrane of the muscle fiber occurs. The "connecting tissue" of the insect is formed by tracheoblasts, their basement membranes, and the basement membranes of other cells. Further mechanical support is given by the ramifying tracheoles. The physiologic roles of the specialized structures are considered.


Sign in / Sign up

Export Citation Format

Share Document