scholarly journals Basophilic Lamellar Systems in the Crayfish Spermatocyte

1958 ◽  
Vol 4 (3) ◽  
pp. 267-274 ◽  
Author(s):  
August Ruthmann

Histochemical procedures for the demonstration of RNA have shown the presence of intensely basophilic bodies in the cytoplasm of spermatocytes of the crayfish, Cambarus virilis. The staining of thick sections, cut alternately with thin sections for electron microscopy, has permitted identification of the basophilic bodies with two types of lamellar systems. One of these, a set of straight annulate lamellae, is restricted to meiotic prophase. The second type of lamellar systems has been found from late prophase to early spermatid stages. It consists of an ellipsoidal lamellar set which intersects a number of straight lamellae. Within the region of intersection, the ellipsoidal lamellae break up into an array of small tubules of about 150 A diameter. The term tubulate lamellar system was chosen to designate this type of lamellar complex. Small RNA-containing granules could not be detected in annulate lamellar systems. While there are a few granules in the marginal regions of the tubulate lamellar system, their distribution cannot be responsible for the basophilia which is intense within all regions of the lamellar body.

1956 ◽  
Vol 2 (6) ◽  
pp. 785-796 ◽  
Author(s):  
E. De Robertis

Thin sections of the testicular follicles of the grasshopper Laplatacris dispar were studied under the electron microscope. In the primary spermatocytes, during meiotic prophase, three main regions can be recognized within the nucleus: (1) the nucleolus and associated nucleolar material; (2) the interchromosomal regions with the dense particles; and (3) the chromosomes. The nucleolus is generally compact and is surrounded by nucleolar bodies that comprise aggregations of dense round particles 100 to 250 A in diameter. A continuous transition can be observed between these particles and those found isolated or in short chains in the interchromosomal spaces. Particles of similar size (mean diameter of 160 A) can be found associated with the nuclear membrane and in the cytoplasm. The chromosomes show different degrees of condensation in different stages of meiotic prophase. The bulk of the chromosome appears to be made of very fine and irregularly coiled filaments of macromolecular dimensions. Their length cannot be determined because of the thinness of the section but some of them can be followed without interruption for about 1000 to 2000 A. The thickness of the chromosome filaments seems to vary with different stages of prophase and in metaphase. In early prophase, filaments vary between 28 ± 7 A and 84 ± 7 A with a mean of 47 A, in late prophase the mean is about 70 A. In metaphase the filaments vary between 60 and 170 A with a mean of about 100 A. Neither the prophase nor the metaphase chromosomes have a membrane or other inhomogeneities. The finding of a macromolecular filamentous component of chromosomes is discussed in relation to the physicochemical literature on nucleoproteins and nucleic acids and as a result it is suggested that the thinnest chromosome filaments (28 ± 7 A) probably represent single deoxyribonucleoprotein molecules.


Author(s):  
T. Guha ◽  
P.F. Prentis

Type A spermatogonia in tilapia (Oreochromis ni1oticus) have been studied by electron microscopy. These are stem cells from which spermatogenesis beings in this species. In this paper we report presence of two cytoplasmic organelles, annulate lamellae and nucleolus-like bodies (nuages), in type A spermatogonia in O. niloticus.Testes were fixed in 2% gluteraldehyde for 4 hrs. at 4°C and then in 1% osmium tetroxide for 1 hr. at 4°C, both in 0.1M cacodylate buffer (pH 7.4). Fixed tissues were processed in the conventional way for electron microscopy. Thin sections of tissues were stained by uranyl acetate and lead citrate. These were examined in a Carl Zeiss electron microscope operated at 40kV.Nucleolus-like bodies (nuages) have been reported in rat spermatocytes, early postimplantation rat embryos, fish and amphibian oocytes and guppy (fish) spermatogonia. Annulate lamellae have been found in fish spermatogonia and oocytes. Type A spermatogonia (Figs. 1,2,3,4) in O. niloticus show presence of nucleolus-like bodies (nuages) and annulate lamellae in the cytoplasm.


1983 ◽  
Vol 97 (4) ◽  
pp. 1144-1155 ◽  
Author(s):  
C L Rieder ◽  
R Nowogrodzki

The ultrastructure of spindle formation during the first meiotic division in oocytes of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in serial thick (0.25-micron) and thin sections. During late prophase the nuclear envelope became extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 micron in length, around each of the randomly oriented and condensing tetrads. These membrane elements appeared to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear region. All of the individual tetrads and their associated fusiform sheaths became aligned within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) were found associated with membranes of the meiotic apparatus only after the nuclear envelope had broken down. Kinetochores, with associated MTs, were first recognizable as electron-opaque patches on the chromosomes at this time. The fully formed metaphase arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had diffuse poles that lacked distinct polar MT organizing centers. From these observations we conclude that the apparent individual chromosomal spindles--seen in the light microscope to form around each Xenos tetrad during "intranuclear prometaphase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late prophase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be used to support the hypothesis that chromosomes (kinetochores) induce the polymerization of their associated MTs. Our observation that MTs appeared in association with and parallel to tubular membrane components of the Xenos meiotic apparatus after these membranes became oriented with respect to the tetrads, is consistent with the notion that membranes associated with the spindle determine the orientation of spindle MTs and also play a part in regulating their formation.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J.R. Walton

In electron microscopy, lead is the metal most widely used for enhancing specimen contrast. Lead citrate requires a pH of 12 to stain thin sections of epoxy-embedded material rapidly and intensively. However, this high alkalinity tends to leach out enzyme reaction products, making lead citrate unsuitable for many cytochemical studies. Substitution of the chelator aspartate for citrate allows staining to be carried out at pH 6 or 7 without apparent effect on cytochemical products. Moreover, due to the low, controlled level of free lead ions, contamination-free staining can be carried out en bloc, prior to dehydration and embedding. En bloc use of lead aspartate permits the grid-staining step to be bypassed, allowing samples to be examined immediately after thin-sectioning.Procedures. To prevent precipitation of lead salts, double- or glass-distilled H20 used in the stain and rinses should be boiled to drive off carbon dioxide and glassware should be carefully rinsed to remove any persisting traces of calcium ion.


Author(s):  
C. N. Sun ◽  
C. Araoz ◽  
H. J. White

The ultrastructure of a cerebral primitive neuroectodermal tumor has been reported previously. In the present case, we will present some unusual previously unreported membranous structures and alterations in the cytoplasm and nucleus of the tumor cells.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4% glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1% buffered osmium tetroxide for one hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate.In the cytoplasm of the tumor cells, we found paired cisternae (Fig. 1) and annulate lamellae (Fig. 2) noting that the annulate lamellae were sometimes associated with the outer nuclear envelope (Fig. 3). These membranous structures have been reported in other tumor cells. In our case, mitochondrial to nuclear envelope fusions were often noted (Fig. 4). Although this phenomenon was reported in an oncocytoma, their frequency in the present study is quite striking.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
P.J. Lea ◽  
M.J. Hollenberg

Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.


Author(s):  
T. Baird ◽  
J.R. Fryer ◽  
S.T. Galbraith

Introduction Previously we had suggested (l) that the striations observed in the pod shaped crystals of β FeOOH were an artefact of imaging in the electron microscope. Contrary to this adsorption measurements on bulk material had indicated the presence of some porosity and Gallagher (2) had proposed a model structure - based on the hollandite structure - showing the hollandite rods forming the sides of 30Å pores running the length of the crystal. Low resolution electron microscopy by Watson (3) on sectioned crystals embedded in methylmethacrylate had tended to support the existence of such pores.We have applied modern high resolution techniques to the bulk crystals and thin sections of them without confirming these earlier postulatesExperimental β FeOOH was prepared by room temperature hydrolysis of 0.01M solutions of FeCl3.6H2O, The precipitate was washed, dried in air, and embedded in Scandiplast resin. The sections were out on an LKB III Ultramicrotome to a thickness of about 500Å.


Author(s):  
William H. Massover

Stereoscopic examination of thick sections of fixed and embedded biological tissues by high voltage electron microscopy has been shown to allow direct visualization of three-dimensional fine structure. The present report will consider the occurrence of some new technical problems in specimen preparation and Image interpretation that are not common during lower voltage studies of thin sections.Thick Sectioning and Tissue Coloration - Epon sections of 0.5 μm or more that are cut with glass knives do not have a uniform thickness as Judged by their interference colors; these colors change with time during their flotation on the knife bath, and again when drying onto the specimen support. Quoted thicknesses thus must be considered only as rough estimates unless measured in specific regions by other methods. Chloroform vapors do not always result in good spreading of thick sections; however, they will spread spontaneously to large degrees after resting on the flotation bath for several minutes. Ribbons of thick sections have been almost impossible to obtain.


Sign in / Sign up

Export Citation Format

Share Document