scholarly journals Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.

1980 ◽  
Vol 86 (3) ◽  
pp. 831-845 ◽  
Author(s):  
R K Carlin ◽  
D J Grab ◽  
R S Cohen ◽  
P Siekevitz

Postsynaptic densities (PSDs) have been isolated from cerebral cortex, midbrain, cerebellum, and brain stem by the Triton X-100 method previously used in the isolation of cerebral PSDs (Cohen et al., 1977, J. Cell Biol. 74:181). These PSDs have been compared in protein composition, protein phosphorylation, and morphology. Thin-section electron microscopy revealed that cerebral cortex and midbrain PSDs were identical, being approximately 57 nm thick and composed of apparent aggregates 20-30 nm in diameter. Isolated cerebellar PSDs appeared thinner (33 nm) than cerebral cortex PSDs and lacked the apparent 20- to 30-nm aggregates, but had a latticelike structure. In unidirectional and rotary-shadowed replicas, the cerebrum and midbrain PSDs were circular in shape with a large central perforation or hole in the center of them. Cerebellum PSDs did not have a large perforation, but did have numerous smaller perforations in a lattice like structure. Filaments (6-9 nm) were observed connecting possible 20- to 30-nm aggregates in cerebrum PSDs and were also observed radiating from one side of the PSD. Both cerebral cortex and midbrain PSDs exhibited identical protein patterns on SDS gel electrophoresis. In comparison, cerebellar PSDs (a) lacked the major 51,000 Mr protein, (b) contained two times less calmodulin, and (c) contained a unique protein at 73,000 Mr. Calcium plus calmodulin stimulated the phosphorylation of the 51,000 and 62,000 Mr bands in both cerebral cortex and midbrain PSDs. In cerebellar PSDs, only the 58,000 and 62,000 Mr bands were phosphorylated. In the PSDs from all brain regions, cAMP stimulated the phosphorylation of Protein Ia (73,000 Mr), Protein Ib (68.000 Mr), and a 60,000 Mr protein, although cerebrum and midbrain PSDs contained very much higher levels of phosphorylated protein than did the cerebellum. On the basis of the morphological criteria, it is possible that PSDs isolated from cerebrum and midbrain were derived from the Gray type I, or asymmetric, synapses, whereas cerebellum PSDs were derived from the Gray type II, or symmetric, synapses. Since there is some evidence that the type I synapses are involved in excitatory mechanisms while the type II are involved in inhibitory mechanisms, the role of the PSD and of some of its proteins in these synaptic responses is discussed.

2022 ◽  
Vol 30 (3) ◽  
pp. 95-99
Author(s):  
Karina Sarango-Amay ◽  
Alberth Muñoz-Gualan

Schizencephaly is a rare congenital brain malformation characterized by clefts in the cerebral cortex, it is classified in Type I (open lip) and Type II (close-lip). Patients with schizencephaly present seizures, hydrocephalus, motor and mental deficits. Ultrasound is used for in-utero and newborns patients’ diagnosis, and MRI or CT for already born patients. The management of schizencephaly is conservative, with rehabilitation in motor or mental deficits, medication or surgery for seizures and shunt in hydrocephalus with increased intracranial pressure. In the literature, only few giant bilateral cases have been reported. We report a case of giant bilateral open lip schizencephaly, in a 10-day old male patient, presenting with mild hypotonia and no seizures. This case is rare because the relatively benign features compared to other reported cases.


2019 ◽  
Vol 110 (3-4) ◽  
pp. 292-306 ◽  
Author(s):  
Wei Yuan ◽  
Laifu Li ◽  
Wenjuan Hou ◽  
Zhixiong He ◽  
Limin Wang ◽  
...  

Although maternal separation and neonatal paternal deprivation (PD) have been found to exert a profound and persistent effects on the physiological and behavioural development of offspring, whether preweaning PD (PPD; from PND 10 to 21) affects maternal and parental responses to pups and the underlying neuroendocrine mechanism are under-investigated. Using monogamous mandarin voles (Microtus mandarinus), the present study found that PPD increased the latency to approach a pup-containing ball, decreased the total durations of sniffing and contacting a pup-containing ball and walking and increased the total duration of inactivity in both sexes. Moreover, PPD decreased serum oxytocin levels and increased corticosterone levels, but only in females. Furthermore, in both males and females, PPD decreased the expression of oxytocin receptor mRNA and protein in the medial preoptic area (MPOA), nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), but increased it in the medial amygdala (MeA) and decreased the expression of oestrogen receptor mRNA and protein in the MPOA. PPD increased the expression of dopamine type I receptor in the NAcc, but decreased it in the mPFC. PPD decreased dopamine type II receptor (D2R) in the NAcc both in males and females, but increased D2R in the mPFC in females and decreased D2R protein expression in males. Moreover, PPD decreased vasopressin 1A receptor (V1AR) in the MPOA, MeA and mPFC, but only in males. Our results suggest that the reduction of parental responses to pups induced by PPD may be associated with the sex-specific alteration of several neuroendocrine parameters in relevant brain regions.


2021 ◽  
Vol 14 ◽  
Author(s):  
Julie Polanco ◽  
Fredy Reyes-Vigil ◽  
Sarah D. Weisberg ◽  
Ilirian Dhimitruka ◽  
Juan L. Brusés

Type I and type II classical cadherins comprise a family of cell adhesion molecules that regulate cell sorting and tissue separation by forming specific homo and heterophilic bonds. Factors that affect cadherin-mediated cell-cell adhesion include cadherin binding affinity and expression level. This study examines the expression pattern of type I cadherins (Cdh1, Cdh2, Cdh3, and Cdh4), type II cadherins (Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, Cdh18, Cdh20, and Cdh24), and the atypical cadherin 13 (Cdh13) during distinct morphogenetic events in the developing mouse central nervous system from embryonic day 11.5 to postnatal day 56. Cadherin mRNA expression levels obtained from in situ hybridization experiments carried out at the Allen Institute for Brain Science (https://alleninstitute.org/) were retrieved from the Allen Developing Mouse Brain Atlas. Cdh2 is the most abundantly expressed type I cadherin throughout development, while Cdh1, Cdh3, and Cdh4 are expressed at low levels. Type II cadherins show a dynamic pattern of expression that varies between neuroanatomical structures and developmental ages. Atypical Cdh13 expression pattern correlates with Cdh2 in abundancy and localization. Analyses of cadherin-mediated relative adhesion estimated from their expression level and binding affinity show substantial differences in adhesive properties between regions of the neural tube associated with the segmentation along the anterior–posterior axis. Differences in relative adhesion were also observed between brain nuclei in the developing subpallium (basal ganglia), suggesting that differential cell adhesion contributes to the segregation of neuronal pools. In the adult cerebral cortex, type II cadherins Cdh6, Cdh8, Cdh10, and Cdh12 are abundant in intermediate layers, while Cdh11 shows a gradated expression from the deeper layer 6 to the superficial layer 1, and Cdh9, Cdh18, and Cdh24 are more abundant in the deeper layers. Person’s correlation analyses of cadherins mRNA expression patterns between areas and layers of the cerebral cortex and the nuclei of the subpallium show significant correlations between certain cortical areas and the basal ganglia. The study shows that differential cadherin expression and cadherin-mediated adhesion are associated with a wide range of morphogenetic events in the developing central nervous system including the organization of neurons into layers, the segregation of neurons into nuclei, and the formation of neuronal circuits.


1949 ◽  
Vol 89 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Robert Austrian ◽  
Colin M. MacLeod

The isolation and characterization of a type-specific M protein from pneumococcus are described. This protein is similar chemically in all respects studied to the M proteins of group A streptococci. No immunological crossreactions have been observed, however, between M proteins of the two species. Strains of capsular type I pneumococcus have been encountered which contain different M proteins. The same is true for capsular type II pneumococcus. It is apparent, therefore, that the capsular polysaccharides and M proteins can vary independently of each other.


1988 ◽  
Vol 67 (10) ◽  
pp. 1267-1270 ◽  
Author(s):  
B.J. Moncla ◽  
L. Strockbine ◽  
P. Braham ◽  
J. Karlinsey ◽  
M.C. Roberts

Bacteroides intermedius includes two distinct groups of organisms that are phenotypically indistinguishable by conventional methods. These two groups are represented by the type strain of the species ATCC 25611T (B . intermedius type I) and by ATCC 33563 (B. intermedius type II). Members of each group can be distinguished from each other by analysis of the cellular protein composition by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and by DNA-DNA homology studies, because they share less than 40% homology. The purpose of this study was to prepare specific DNA probes for the two groups of Bacteroides intermedius and to test them against field isolates. Whole-cell DNA probes were prepared from B. intermedius types I and II and tested against 253 field strains of Bacteroides which had been identified by conventional phenotypic tests as B. intermedius. Of these, 170 (67%) hybridized with the B. intermedius type I DNA probe, 28 (11%) with the type II, and 23 (9%) failed to react with the B. intermedius probes but did hybridize with either B. melaninogenicus, B. loescheii, or B. corporis whole-cell DNA probes. The 32 (13%) remaining isolates failed to hybridize with any of the fzve Bacteroides probes or with probes to B. asaccharolyticus, B. buccae, B. buccalis, B. denticola, B. gingivalis, B. oralis, or B. oris. These data demonstrate the usefulness of whole-cell DNA probes for the identification of phenotypically similar or identical field isolates.


1994 ◽  
Vol 14 (6) ◽  
pp. 930-938 ◽  
Author(s):  
Hidekazu Tomimoto ◽  
Masaki Nishimura ◽  
Toshihiko Suenaga ◽  
Sinichi Nakamura ◽  
Ichiro Akiguchi ◽  
...  

The distribution of nitric oxide synthase was investigated in human cerebral blood vessels and brain tissues. NADPH-diaphorase histochemistry, which is a marker for nitric oxide synthase in neurons and endothelial cells, revealed periadventitial nerve fibers in the arteries of the circle of Willis and their cortical branches, as well as the common carotid and subclavian arteries. The fibers were mostly nonvaricose in the periadventitial nerve trunk and were varicose within the adventitia. Patchy reaction products were distributed in the perinuclear region of each endothelial cell. Smooth muscle cells in the tunica media were weakly stained. Staining was particularly intense in regions with atherosclerotic changes, which consist of macrophage infiltration and proliferation of fibroblasts. In the neural parenchyma, two types of NADPH-diaphorase reactive neurons were differentiated. Type I neurons were intensely stained, medium-sized, and bipolar or multipolar. They were distributed in the cerebral cortex and white matter, mostly in the subcortical white matter. Type II neurons were lightly stained, small oval neurons with fine processes and were distributed in the cerebral cortex. Endothelial cells were intensely reactive for NADPH-diaphorase in the arteries, arterioles, and capillaries but weakly in veins. Immuno-histochemistry for neural nitric oxide synthase labeled perivascular nerves in the larger arteries and those in the neural parenchyma. Both type I and type II neurons were labeled. Nitric oxide synthase in endothelial cells and the nerve encircling blood vessels further suggests a dual control of cerebral circulation by nitric oxide in human brain.


2017 ◽  
Vol 13 (1) ◽  
pp. e1005349 ◽  
Author(s):  
Stewart Heitmann ◽  
Michael Rule ◽  
Wilson Truccolo ◽  
Bard Ermentrout

2021 ◽  
Author(s):  
Yunqi Huang ◽  
Yunjia Liu ◽  
Yulu Wu ◽  
Yiguo Tang ◽  
Siyi Liu ◽  
...  

Genome-wide association studies (GWAS) analyses have revealed genetic evidence of bipolar disorder (BD), but little is known about genetic structure of BD subtypes. We aimed to investigate genetic overlap and distinction of bipolar type I (BDI) & type II (BDII) by conducting integrative post-GWAS analyses. This study utilized single nucleotide polymorphism (SNP)-level approaches to uncover correlated and distinct genetic loci. Transcriptome-wide association analyses (TWAS) were then approached to pinpoint functional genes expressed in specific brain tissues and blood. Next, we performed cross-phenotype analysis including exploring the potential causal associations between BDI & II and drug responses and comparing the difference of genetic structures among four different psychiatric traits. Our results find SNP-level evidence revealed three genomic loci, SLC25A17, ZNF184 and RPL10AP3 shared by BDI & II, while one locus (i.e., MAD1L1) and significant gene sets involved in calcium channel activity, neural and synapsed signals that distinguished two subtypes. TWAS data implicated different genes effecting BDI & II through expression in specific brain regions (e.g., nucleus accumbens for BDI). Cross-phenotype analyses indicated that BDI & II have different drug response, but share continuous genetic structures with schizophrenia (SCZ) and major depression disorder (MDD), which help fill the gaps left by the dichotomy of mental disorder. These combined evidences illustrate genetic convergence and divergence between BDI & II and provide an underlying biological and trans-diagnostic insight into major psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document