scholarly journals The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. I. Observations in hepatocytes.

1981 ◽  
Vol 88 (1) ◽  
pp. 1-15 ◽  
Author(s):  
G Bennett ◽  
D O'Shaughnessy

To study the site of incorporation of sialic acid residues into glycoproteins in hepatocytes, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of [3H]N-acetylmannosamine (8 mCi) and then sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N-acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Concurrent biochemical experiments were carried out to test the specificity of injected [3H]N-acetylmannosamine as a precursor for sialic acid residues of glycoproteins. In radioautographs from rats and mice sacrificed 10 min after injection, grain counts showed that over 69% of the silver grains occurred over the Golgi region. The majority of these grains were localized over the trans face of the Golgi stack, as well as over associated secretory vesicles and possibly GERL. In rats, the proportion of grains over the Golgi region decreased with time to 37% at 1 h, 11% at 4 h, and 6% at 24 h. Meanwhile, the proportion of grains over the plasma membrane increased from 4% at 10 min to 29% at 1 h and over 55% at 4 and 24 h; two-thirds of these grains lay over the sinusoidal membrane, and the remainder were equally divided over the lateral and bile canalicular membranes. Many silver grains also appeared over lysosomes at the 4- and 24-h time intervals, accounting for 15-17% of the total. At 3 and 9 d after injection, light microscope radioautographs revealed a grain distribution similar to that seen at 24 h, with a progressive decrease in the intensity of labeling such that by 9 d only a very light reaction remained. Because our biochemical findings indicated that [3H]N-acetylmannosamine is a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids), the interpretation of these results is that sialic acid is incorporated into these molecules in the Golgi apparatus and that the latter then migrate to secretion products, to the plasma membrane, and to lysosomes in a process of continuous renewal. It is possible that some of the label seen in lysosomes at later time intervals may have been derived from the plasma membrane or from material arising outside the cells.

1974 ◽  
Vol 60 (1) ◽  
pp. 258-284 ◽  
Author(s):  
Gary Bennett ◽  
C. P. Leblond ◽  
Antonio Haddad

A single intravenous injection of L-[3H]fucose, a specific glycoprotein precursor, was given to young 35–45 g rats which were sacrificed at times varying between 2 min and 30 h later. Radioautography of over 50 cell types, including renewing and nonrenewing cells, was carried out for light and electron microscope study. At early time intervals (2–10 min after injection), light microscope radioautography showed a reaction over nearly all cells investigated in the form of a discrete clump of silver grains over the Golgi region. This reaction varied in intensity and duration from cell type to cell type. Electron microscope radioautographs of duodenal villus columnar cells and kidney proximal and distal tubule cells at early time intervals revealed that the silver grains were restricted to Golgi saccules. These observations are interpreted to mean that glycoproteins undergoing synthesis incorporate fucose in the saccules of the Golgi apparatus. Since fucose occurs as a terminal residue in the carbohydrate side chains of glycoproteins, the Golgi saccules would be the site of completion of synthesis of these side chains. At later time intervals, light and electron microscope radioautography demonstrated a decrease in the reaction intensity of the Golgi region, while reactions appeared over other parts of the cells: lysosomes, secretory material, and plasma membrane. The intensity of the reactions observed over the plasma membrane varied considerably in various cell types; furthermore the reactions were restricted to the apical surface in some types, but extended to the whole surface in others. Since the plasma membrane is covered by a "cell coat" composed of the carbohydrate-rich portions of membrane glycoproteins, it is concluded that newly formed glycoproteins, after acquiring fucose in the Golgi apparatus, migrate to the cell surface to contribute to the cell coat. This contribution implies turnover of cell coat glycoproteins, at least in nonrenewing cell types, such as those of kidney tubules. In the young cells of renewing populations, e.g. those of gastro-intestinal epithelia, the new glycoproteins seem to contribute to the growth as well as the turnover of the cell coat. The differences in reactivity among different cell types and cell surfaces imply considerable differences in the turnover rates of the cell coats.


1981 ◽  
Vol 88 (1) ◽  
pp. 16-28 ◽  
Author(s):  
G Bennett ◽  
F W Kan ◽  
D O'Shaughnessy

Biochemical evidence from the preceding paper indicated that [3H]N-acetylmannosamine may be used as a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids) in radioautographs of rat liver and duodenum. In order to study the site of incorporation of this label in cell types of various tissues, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of 8 mCi of [3H]N-acetylmannosamine and sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N-acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Light microscope radioautographic analysis revealed that in a great variety of cell types the label was initially localized to the Golgi region. Electron microscope radioautographic analysis of duodenal villous columnar and goblet cells, pancreatic acinar cells and Paneth cells, from rats and mice sacrificed 10 min after injection, showed that the silver grains were localized over Golgi saccules (and adjacent secretion granules). In kidney proximal and distal tubule cells reaction was initially localized to the Golgi apparatus in some areas of the kidney cortex whereas in other areas it was more diffuse. In all cells, the proportion of silver grains over the Golgi apparatus decreased with time after injection while an increasing number of grains appeared over secretion products in secretory cells or over the plasma membrane in other cell types. Lysosomes also became increasingly labeled at later time intervals. The above results suggest that in most cell types sialic acid residues are incorporated into glycoproteins (and perhaps glycolipids), primarily in the Golgi apparatus. With time, these newly synthesized molecules migrate to secretion products, to the plasma membrane, or to the lysosomes.


1992 ◽  
Vol 288 (3) ◽  
pp. 897-901 ◽  
Author(s):  
M Murgia ◽  
P Pizzo ◽  
T H Steinberg ◽  
F Di Virgilio

Extracellular ATP (ATPo) is known to be cytotoxic to many cell types through a mechanism which is largely unknown. Very recently this nucleotide has been shown to cause cell death by apoptosis, probably by interacting with specific cell-surface receptors. In the present study we have investigated the mechanism of ATPo-dependent cytotoxicity in the macrophage-like mouse cell line J774. It has been previously reported that in this cell type ATPo activates trans-membrane Ca2+ and Na+ fluxes and a drastic increase in the plasma-membrane permeability to hydrophilic solutes smaller than 900 Da. These changes are followed by cell swelling and lysis. We show in the present study that, although this nucleotide triggers a rise in the cytoplasmic Ca2+ concentration, neither cell swelling nor lysis is Ca(2+)-dependent. Furthermore, cell lysis is not dependent on Na+ influx, as it is not prevented by iso-osmotic replacement of extracellular Na+ with choline or N-methylglucamine. On the contrary, ATPo-dependent cytotoxicity, but not the ATPo-dependent increase in plasma-membrane permeability, is completely abrogated in sucrose medium. Under our experimental conditions ATPo does not cause DNA fragmentation in J774 cells. We conclude from these findings that ATPo does not cause apoptosis of J774 macrophages and promotes a Ca(2+)- and Na(+)-independent colloido-osmotic lysis.


1993 ◽  
Vol 121 (2) ◽  
pp. 269-281 ◽  
Author(s):  
T C Hobman ◽  
L Woodward ◽  
M G Farquhar

Rubella virus (RV) has been reported to bud from intracellular membranes in certain cell types. In this study the intracellular site of targeting of RV envelope E2 and E1 glycoproteins has been investigated in three different cell types (CHO, BHK-21 and Vero cells) transfected with a cDNA encoding the two glycoproteins. By indirect immunofluorescence, E2 and E1 were localized to the Golgi region of all three cell types, and their distribution was disrupted by treatment with BFA or nocodazole. Immunogold labeling demonstrated that E2 and E1 were localized to Golgi cisternae and indicated that the glycoproteins were distributed across the Golgi stack. Analysis of immunoprecipitates obtained from stably transfected CHO cells revealed that E2 and E1 become endo H resistant and undergo sialylation without being transported to the cell surface. Transport of RV glycoproteins to the Golgi complex was relatively slow (t1/2 = 60-90 min). Coprecipitation experiments indicated that E2 and E1 form a heterodimer in the RER. E1 was found to fold much more slowly than E2, suggesting that the delay in transport of the heterodimer to the Golgi may be due to the slow maturation of E1 in the ER. These results indicate that RV glycoproteins behave as integral membrane proteins of the Golgi complex and thus provide a useful model to study targeting and turnover of type I membrane proteins in this organelle.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonam Gurung ◽  
Dany Perocheau ◽  
Loukia Touramanidou ◽  
Julien Baruteau

AbstractThe use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


1992 ◽  
Vol 70 (S1) ◽  
pp. S263-S268 ◽  
Author(s):  
H. Steve White ◽  
Sien Yao Chow ◽  
Y. C. Yen-Chow ◽  
Dixon M. Woodbury

Potassium is tightly regulated within the extracellular compartment of the brain. Nonetheless, it can increase 3- to 4-fold during periods of intense seizure activity and 10- to 20-fold under certain pathological conditions such as spreading depression. Within the central nervous system, neurons and astrocytes are both affected by shifts in the extracellular concentration of potassium. Elevated potassium can lead to a redistribution of other ions (e.g., calcium, sodium, chloride, hydrogen, etc.) within the cellular compartment of the brain. Small shifts in the extracellular potassium concentration can markedly affect acid–base homeostasis, energy metabolism, and volume regulation of these two brain cells. Since normal neuronal function is tightly coupled to the ability of the surrounding glial cells to regulate ionic shifts within the brain and since both cell types can be affected by shifts in the extracellular potassium, it is important to characterize their individual response to an elevation of this ion. This review describes the results of side-by-side studies conducted on cortical neurons and astrocytes, which assessed the effect of elevated potassium on their resting membrane potential, intracellular volume, and their intracellular concentration of potassium, sodium, and chloride. The results obtained from these studies suggest that there exists a marked cellular heterogeneity between neurons and astrocytes in their response to an elevation in the extracellular potassium concentration.Key words: astrocytes, neurons, ion concentration, neuronal–glial interactions, mouse, cell culture.


1995 ◽  
Vol 198 (8) ◽  
pp. 1711-1715 ◽  
Author(s):  
T A Heming ◽  
D L Traber ◽  
F Hinder ◽  
A Bidani

The role of plasma membrane V-ATPase activity in the regulation of cytosolic pH (pHi) was determined for resident alveolar and peritoneal macrophages (m theta) from sheep. Cytosolic pH was measured using 2',7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF). The baseline pHi of both cell types was sensitive to the specific V-ATPase inhibitor bafilomycin A1. Bafilomycin A1 caused a significant (approximately 0.2 pH units) and rapid (within seconds) decline in baseline pHi. Further, bafilomycin A1 slowed the initial rate of pHi recovery (dpHi/dt) from intracellular acid loads. Amiloride had no effects on baseline pHi, but reduced dpHi/dt (acid-loaded pHi nadir < 6.8) by approximately 35%. Recovery of pHi was abolished by co-treatment of m theta with bafilomycin A1 and amiloride. These data indicate that plasma membrane V-ATPase activity is a major determinant of pHi regulation in resident alveolar and peritoneal m theta from sheep. Sheep m theta also appear to possess a Na+/H+ exchanger. However, Na+/H+ exchange either is inactive or can be effectively masked by V-ATPase-mediated H+ extrusion at physiological pHi values.


1984 ◽  
Vol 4 (9) ◽  
pp. 1800-1806
Author(s):  
T H Bestor ◽  
S B Hellewell ◽  
V M Ingram

Methyl-accepting assays and a sensitive method for labeling specific CpG sites have been used to show that the DNA of F9 embryonal carcinoma cells decreases in 5-methylcytosine content by ca. 9% during retinoic acid-induced differentiation, whereas the DNA of dimethyl sulfoxide-induced Friend murine erythroleukemia (MEL) cells loses ca. 3.8% of its methyl groups. These values correspond to the demethylation of 2.2 X 10(6) and 0.9 X 10(6) 5'-CpG-3' sites per haploid genome in differentiating F9 and MEL cells, respectively. Fluorography of DNA restriction fragments methylated in vitro and displayed on agarose gels showed that demethylation occurred throughout the genome. In uninduced F9 cells, the sequence TCGA tended to be more heavily methylated than did the sequence CCGG, whereas this tendency was reversed in MEL cells. The kinetics of in vitro DNA methylation reactions catalyzed by MEL cell DNA methyltransferase showed that substantial numbers of hemimethylated sites accumulate in the DNA of terminally differentiating F9 and MEL cells, implying that a partial loss of DNA-methylating activity may accompany terminal differentiation in these two cell types.


Sign in / Sign up

Export Citation Format

Share Document