scholarly journals GENETICS OF SOMATIC MAMMALIAN CELLS

1958 ◽  
Vol 108 (2) ◽  
pp. 259-268 ◽  
Author(s):  
J. H. Tjio ◽  
Theodore T. Puck

A convenient, reliable method for chromosome delineation of animal cells grown as monolayers on glass has been applied to human, opossum, and Chinese hamster cells. Tissue cultured cells from 5 different, normal organs of 7 different human subjects uniformly displayed the expected chromosome number of 46 and showed no variations in morphology or number other than the expected sex differences and a small incidence of polyploidy. The chromosomes of normal cells from the American opossum were as uniform as those of human cells. Cells of the inbred Chinese hamster demonstrated appreciable karyotype variability, the cause of which is under investigation. The chromosome number and morphology of cells from normal human tissues have remained constant after more than 5 months of continuous, rapid growth in tissue culture involving scores of vessel transfers and a number of generations equivalent to many billions of progeny. By the use of routine recloning, even cells of malignant, aneuploid constitution have been maintained in active growth for 3 years and hundreds of generations, with stable chromosomal and metabolic characteristics. The cells of the American opossum and Chinese hamster which possess only 22 chromosomes have been established in vitro and are especially suitable for genetic studies. The readily recognizeable Y and X chromosomes of the male opossum are particularly favorable as cytological markers. Photomicrographs of the chromosomes of the various cells employed are presented.

2007 ◽  
Vol 18 (10) ◽  
pp. 3741-3751 ◽  
Author(s):  
Kiyoko Ogawa-Goto ◽  
Keiko Tanaka ◽  
Tomonori Ueno ◽  
Keisuke Tanaka ◽  
Takeshi Kurata ◽  
...  

p180 was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum membrane, although its precise role in animal cells has not yet been elucidated. Here, we characterized a new function of human p180 as a microtubule-binding and -modulating protein. Overexpression of p180 in mammalian cells induced an elongated morphology and enhanced acetylated microtubules. Consistently, electron microscopic analysis clearly revealed microtubule bundles in p180-overexpressing cells. Targeted depletion of endogenous p180 by small interfering RNAs led to aberrant patterns of microtubules and endoplasmic reticulum in mammalian cells, suggesting a specific interaction between p180 and microtubules. In vitro sedimentation assays using recombinant polypeptides revealed that p180 bound to microtubules directly and possessed a novel microtubule-binding domain (designated MTB-1). MTB-1 consists of a predicted coiled-coil region and repeat domain, and strongly promoted bundle formation both in vitro and in vivo when expressed alone. Overexpression of p180 induced acetylated microtubules in cultured cells in an MTB-1-dependent manner. Thus, our data suggest that p180 mediates interactions between the endoplasmic reticulum and microtubules mainly through the novel microtubule-binding and -bundling domain MTB-1.


1958 ◽  
Vol 108 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Theodore T. Puck ◽  
Steven J. Cieciura ◽  
Arthur Robinson

A methodology designed to eliminate mitotic inhibitor action and involving use of pretested fetal calf serum and careful pH and temperature control has been described by which cells from normal human and animal tissue can be maintained in active growth for long periods in vitro without development of aneuploidy. By means of this procedure, it is possible reliably to establish cell cultures from minute skin biopsies which can be taken from any individual. Clones of mammalian cells with chromosomal markers have been isolated by this means from x-irradiated non-irradiated cell cultures. Application of these techniques to chromosome delineation in large numbers of human subjects; determination of chromosomal sex in patients; spontaneuos and induced genetic changes in somatic mammalian cells in vivo and in vitro; comparison of metabolic differences between normal and cancerous cells and other problems have been indicated.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 239-252 ◽  
Author(s):  
F D Gillin ◽  
D J Roufa ◽  
A L Beaudet ◽  
C T Caskey

ABSTRACT Chinese hamster cells were treated with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, and mutants resistant to 8-azaguanine were selected and characterized. Hypoxanthine-guanine phosphoribosyltransferase activity of sixteen mutants is extremely negative, making them suitable for reversion to HGPRTase+. Ten of the extremely negative mutants revert at a frequency higher than 10-7 suggesting their point mutational character. The remaining mutants have demonstrable HGPRTase activity and are not useful for reversion analysis. Five of these mutants have < 2% HGPRTase and are presumably also HGPRTase point mutants. The remaining 14 mutants utilize exogenous hypoxanthine for nucleic acid synthesis poorly, and possess 20-150% of wild-type HGPRTase activity in in vitro. Their mechanism of 8-azaguanine resistance is not yet defined.


1973 ◽  
Vol 13 (3) ◽  
pp. 841-861
Author(s):  
YVONNE L. BOYD ◽  
H. HARRIS

Chinese hamster cells lacking inosinic acid pyrophosphorylase and mouse cells lacking thymidine kinase were fused with chick erythrocytes. The resultant heterokaryons were cultivated in a selective medium in which possession of these enzymes was essential for cell survival and growth. Clones of cells able to grow in this medium were isolated and studied. A detailed karyological analysis of these clones failed to reveal any chick chromosomes; nor could any chick-specific antigens be detected on the surface of the cells. Nonetheless, clones arising from the fusion of chick erythrocytes with Chinese hamster cells were shown to possess an inosinic acid pyrophosphorylase which had the electrophoretic characteristics of chick inosinic acid pyrophosphorylase. However, the clones arising from the fusion of the chick erythrocytes with the mouse cells had a thymidine kinase with the electrophoretic mobility and heat sensitivity of murine, not chick, thymidine kinase. Both types of hybrid cell have now been cultivated in vitro for 18 months without the loss of thymidine kinase or inosinic acid pyrophosphorylase activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noriko Yamano-Adachi ◽  
Rintaro Arishima ◽  
Sukwattananipaat Puriwat ◽  
Takeshi Omasa

Abstract Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.


1971 ◽  
Vol 50 (2) ◽  
pp. 416-431 ◽  
Author(s):  
B. R. Brinkley ◽  
Joiner Cartwright

The mitotic spindle of many mammalian cells undergoes an abrupt elongation at anaphase. In both cultured rat kangaroo (strain PtK1) and Chinese hamster (strain Don-C) fibroblasts, the distance from pole to pole at metaphase doubles during anaphase and telophase. In order to determine the organization and distribution of spindle microtubules during the elongation process, cells were fixed and flat embedded in Epon 812. Selected cells were photographed with the phase-contrast microscope and then serially sectioned perpendicular to the major spindle axis. Microtubule profiles were counted in selected sections, and the number was plotted with respect to position along the spindle axis. Interpretation of the distribution profiles indicated that not all interpolar microtubules extended from pole to pole. It is estimated that 55–70% of the interpolar microtubules are overlapped at the cell equator while 30–45% extend across the equator into both half spindles. This arrangement appeared to persist from early anaphase (before elongation) until telophase after the elongation process. Although sliding or shearing of microtubules may occur in the spindle, such appears not to be the mechanism by which the spindle elongates in anaphase. Instead, our data support the hypothesis that spindle elongation occurs by growth of prepositioned microtubules which "push" the poles apart.


2011 ◽  
Vol 435 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Anne Roobol ◽  
Jo Roobol ◽  
Martin J. Carden ◽  
Amandine Bastide ◽  
Anne E. Willis ◽  
...  

In vitro cultured mammalian cells respond to mild hypothermia (27–33 °C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31–33 °C) and its complete arrest at the lower range (27–28 °C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)–p53–p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR–p53–p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.


1985 ◽  
Vol 31 (12) ◽  
pp. 1152-1156
Author(s):  
Thomas Fitzgerald

The in vitro effects of antibodies, complement, and (or) macrophages on Treponema pallidum have been previously characterized using relatively simple systems of organisms incubated with the immune components. In vivo, the more complex environment may alter immune reactivity. Experiments were performed to determine whether immobilizing and neutralizing antibodies retained their effectiveness in a more complex environment involving cultured mammalian cells. Two different protocols were used. In protocol A treponemes and normal or immune serum were mixed and added immediately to the cultured cells. In protocol B treponemes were preincubated for 18 h with cultured cells to maximize treponemal attachment; then normal or immune serum was added. With both protocols, attachment of organisms resulted in less effecient immobilization and neutralization. In further experiments, cultured cells were disrupted with Triton X, leaving cytoskeletal remnants on the vessel surface. Identical immobilization and neutralization experiments were performed in the presence of these remnants. In contrast to the findings with viable cultured cells, treponemal attachment to these nonviable remnants did not effect either antibody reaction. Attached organisms were immobilized or neutralized just as efficiently as unattached organisms. Results are discussed in terms of the altered immune reactivity in more complex in vitro environments.


Sign in / Sign up

Export Citation Format

Share Document