scholarly journals ULTRASTRUCTURAL ANALYSIS OF MITOTIC SPINDLE ELONGATION IN MAMMALIAN CELLS IN VITRO

1971 ◽  
Vol 50 (2) ◽  
pp. 416-431 ◽  
Author(s):  
B. R. Brinkley ◽  
Joiner Cartwright

The mitotic spindle of many mammalian cells undergoes an abrupt elongation at anaphase. In both cultured rat kangaroo (strain PtK1) and Chinese hamster (strain Don-C) fibroblasts, the distance from pole to pole at metaphase doubles during anaphase and telophase. In order to determine the organization and distribution of spindle microtubules during the elongation process, cells were fixed and flat embedded in Epon 812. Selected cells were photographed with the phase-contrast microscope and then serially sectioned perpendicular to the major spindle axis. Microtubule profiles were counted in selected sections, and the number was plotted with respect to position along the spindle axis. Interpretation of the distribution profiles indicated that not all interpolar microtubules extended from pole to pole. It is estimated that 55–70% of the interpolar microtubules are overlapped at the cell equator while 30–45% extend across the equator into both half spindles. This arrangement appeared to persist from early anaphase (before elongation) until telophase after the elongation process. Although sliding or shearing of microtubules may occur in the spindle, such appears not to be the mechanism by which the spindle elongates in anaphase. Instead, our data support the hypothesis that spindle elongation occurs by growth of prepositioned microtubules which "push" the poles apart.

1982 ◽  
Vol 94 (3) ◽  
pp. 644-653 ◽  
Author(s):  
U Euteneuer ◽  
W T Jackson ◽  
J R McIntosh

Structural polarities of mitotic spindle microtubules in the plant Haemanthus katherinae have been studied by lysing endosperm cells in solutions of neurotubulin under conditions that will decorate cellular microtubules with curved sheets of tubulin protofilaments. Microtubule polarity was observed at several positions in each cell by cutting serial thin sections perpendicular to the spindle axis. The majority of the microtubules present in a metaphase or anaphase half-spindle are oriented with their fast-growing or "plus" ends distal to the polar area. Near the polar ends of the spindle and up to about halfway between the kinetichores and the poles, the number of microtubules with opposite polarity is low: 8-20% in metaphase and 2-15% in anaphase cells. Direct examination of 10 kinetochore fibers shows that the majority of these microtubules, too, are oriented with their plus ends distal to the poles, as had been previously shown in animal cells. Sections from the region near the spindle equator reveal an increased fraction of microtubules with opposite polarity. Graphs of polarity vs. position along the spindle axis display a smooth transition from microtubules of one orientation near the first pole, through a region containing equal numbers of the two orientations, to a zone near the second pole where the opposite polarity predominates. We conclude that the spindle of endosperm cells is constructed from two sets of microtubules with opposite polarity that interdigitate near the spindle equator. The length of the zone of interdigitation shortens from metaphase through telophase, consistent with a model that states that during anaphase spindle elongation in Haemanthus, the interdigitating sets of microtubules are moved apart. We found no major changes in the distribution of microtubule polarity in the spindle interzone from anaphase to telophase when cells are engaged in phragmoplast formation. Therefore, the initiation and organization of new microtubules, thought to take place during phragmoplast assembly, must occur without significant alteration of the microtubule polarity distribution.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 239-252 ◽  
Author(s):  
F D Gillin ◽  
D J Roufa ◽  
A L Beaudet ◽  
C T Caskey

ABSTRACT Chinese hamster cells were treated with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, and mutants resistant to 8-azaguanine were selected and characterized. Hypoxanthine-guanine phosphoribosyltransferase activity of sixteen mutants is extremely negative, making them suitable for reversion to HGPRTase+. Ten of the extremely negative mutants revert at a frequency higher than 10-7 suggesting their point mutational character. The remaining mutants have demonstrable HGPRTase activity and are not useful for reversion analysis. Five of these mutants have < 2% HGPRTase and are presumably also HGPRTase point mutants. The remaining 14 mutants utilize exogenous hypoxanthine for nucleic acid synthesis poorly, and possess 20-150% of wild-type HGPRTase activity in in vitro. Their mechanism of 8-azaguanine resistance is not yet defined.


1973 ◽  
Vol 13 (3) ◽  
pp. 841-861
Author(s):  
YVONNE L. BOYD ◽  
H. HARRIS

Chinese hamster cells lacking inosinic acid pyrophosphorylase and mouse cells lacking thymidine kinase were fused with chick erythrocytes. The resultant heterokaryons were cultivated in a selective medium in which possession of these enzymes was essential for cell survival and growth. Clones of cells able to grow in this medium were isolated and studied. A detailed karyological analysis of these clones failed to reveal any chick chromosomes; nor could any chick-specific antigens be detected on the surface of the cells. Nonetheless, clones arising from the fusion of chick erythrocytes with Chinese hamster cells were shown to possess an inosinic acid pyrophosphorylase which had the electrophoretic characteristics of chick inosinic acid pyrophosphorylase. However, the clones arising from the fusion of the chick erythrocytes with the mouse cells had a thymidine kinase with the electrophoretic mobility and heat sensitivity of murine, not chick, thymidine kinase. Both types of hybrid cell have now been cultivated in vitro for 18 months without the loss of thymidine kinase or inosinic acid pyrophosphorylase activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noriko Yamano-Adachi ◽  
Rintaro Arishima ◽  
Sukwattananipaat Puriwat ◽  
Takeshi Omasa

Abstract Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.


1996 ◽  
Vol 16 (7) ◽  
pp. 3576-3586 ◽  
Author(s):  
C H Yang ◽  
J Tomkiel ◽  
H Saitoh ◽  
D H Johnson ◽  
W C Earnshaw

The kinetochore in eukaryotes serves as the chromosomal site of attachment for microtubules of the mitotic spindle and directs the movements necessary for proper chromosome segregation. In mammalian cells, the kinetochore is a highly differentiated trilaminar structure situated at the surface of the centromeric heterochromatin. CENP-C is a basic, DNA-binding protein that localizes to the inner kinetochore plate, the region that abuts the heterochromatin. Microinjection experiments using antibodies specific for CENP-C have demonstrated that this protein is required for the assembly and/or stability of the kinetochore as well as for a timely transition through mitosis. From these observations, it has been suggested that CENP-C is a structural protein that is involved in the organization or the kinetochore. In this report, we wished to identify and map the functional domains of CENP-C. Analysis of CENP-C truncation mutants expressed in vivo demonstrated that CENP-C possesses an autonomous centromere-targeting domain situated at the central region of the CENP-C polypeptide. Similarly, in vitro assays revealed that a region of CENP-C with the ability to bind DNA is also located at the center of the CENP-C molecule, where it overlaps the centromere-targeting domain.


2011 ◽  
Vol 435 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Anne Roobol ◽  
Jo Roobol ◽  
Martin J. Carden ◽  
Amandine Bastide ◽  
Anne E. Willis ◽  
...  

In vitro cultured mammalian cells respond to mild hypothermia (27–33 °C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31–33 °C) and its complete arrest at the lower range (27–28 °C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)–p53–p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR–p53–p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.


2001 ◽  
Vol 155 (7) ◽  
pp. 1137-1146 ◽  
Author(s):  
Iain M. Cheeseman ◽  
Christine Brew ◽  
Michael Wolyniak ◽  
Arshad Desai ◽  
Scott Anderson ◽  
...  

Dam1p, Duo1p, and Dad1p can associate with each other physically and are required for both spindle integrity and kinetochore function in budding yeast. Here, we present our purification from yeast extracts of an ∼245 kD complex containing Dam1p, Duo1p, and Dad1p and Spc19p, Spc34p, and the previously uncharacterized proteins Dad2p and Ask1p. This Dam1p complex appears to be regulated through the phosphorylation of multiple subunits with at least one phosphorylation event changing during the cell cycle. We also find that purified Dam1p complex binds directly to microtubules in vitro with an affinity of ∼0.5 μM. To demonstrate that subunits of the Dam1p complex are functionally important for mitosis in vivo, we localized Spc19–green fluorescent protein (GFP), Spc34-GFP, Dad2-GFP, and Ask1-GFP to the mitotic spindle and to kinetochores and generated temperature-sensitive mutants of DAD2 and ASK1. These and other analyses implicate the four newly identified subunits and the Dam1p complex as a whole in outer kinetochore function where they are well positioned to facilitate the association of chromosomes with spindle microtubules.


Sign in / Sign up

Export Citation Format

Share Document