scholarly journals BIOCHEMICAL STUDY OF CELLULAR ANTIGEN-ANTIBODY REACTION IN TISSUE CULTURE

1960 ◽  
Vol 112 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Akira Tokuda ◽  
Hideo Hayashi ◽  
Kinishiro Matsuba

Decrease in the protease activity of the culture fluid observed at later stages of the antigen-antibody reaction is believed to be due to the release of an inhibitor by the cells. The inhibitor was submitted to partial purification: it is heat-stable, non-precipitated by trichloracetic acid and non-dialyzable. It inhibits certain cellular and tissue proteases and papain but is inactive against trypsin. It is suggested that the balance between protease and anti-protease released may determine the intensity, extent, and duration of certain sensitization phenomena.

1960 ◽  
Vol 112 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Hideo Hayashi ◽  
Akira Tokuda ◽  
Keiji Udaka

The correlation between morphological and biochemical changes produced by the antigen-antibody reaction was studied in cultures of tissue monocytes taken from sensitized animals. The cells were grown under conditions which allowed collection of samples from the culture fluid as well as microscopic observation. Introduction of the antigen into the culture medium causes rapid release of a protease characterized by its susceptibility to sulfhydryl block and its optimum pH in the neutral range. Protease activation occurs simultaneously with morphological changes in the cytoplasm of the cultured cells. Delayed changes affecting the mitochondria and Golgi bodies appear after the peak of the proteolytic reaction and may be secondary to it. The gradual inactivation of the protease observed in the course of the antigen-antibody reaction will be discussed in a separate paper.


2013 ◽  
Vol 10 (2) ◽  
pp. 29
Author(s):  
Normah Ismail ◽  
Nur' Ain Mohamad Kharoe

Unripe and ripe bilimbi (Averrhoa bilimbi L.) were ground and the extracted juices were partially purified by ammonium sulfate precipitation at the concentrations of 40 and 60% (w/v). The collected proteases were analysed for pH, temperature stability, storage stability, molecular weight distribution, protein concentration and protein content. Protein content of bilimbi fruit was 0.89 g. Protease activity of both the unripe and ripe fruit were optimum at pH 4 and 40°C when the juice were purified at 40 and 60% ammonium sulfate precipitation. A decreased in protease activity was observed during the seven days of storage at 4°C. Molecular weight distribution indicated that the proteases protein bands fall between IO to 220 kDa. Protein bands were observed at 25, 50 and 160 kDa in both the unripe and ripe bilimbi proteases purified with 40% ammonium sulfate, however, the bands were more intense in those from unripe bilimbi. No protein bands were seen in proteases purified with 60% ammonium sulfate. Protein concentration was higher for proteases extracted with 40% ammonium sulfate at both ripening stages. Thus, purification using 40% ammonium sulfate precipitation could be a successful method to partially purify proteases from bilimbi especially from the unripe stage. 


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4924
Author(s):  
Koji Kano ◽  
Hiromi Yatsuda ◽  
Jun Kondoh

Shear horizontal surface acoustic wave (SH-SAW) biosensors measure the reaction of capture antibodies immobilized on the sensing surface to capture test molecules (antigens) by using the change in SH-SAW propagation characteristics. SH-SAW displacement exists not only on the SH-SAW propagating surface, but also partially penetrates the specimen liquid to a certain depth, which is determined by the liquid properties of the specimen and the operating frequency of the SH-SAW. This phenomenon is called viscosity penetration. In previous studies, the effect of viscosity penetration was not considered in the measurement of SH-SAW biosensors, and the mass or viscosity change caused by the specific binding of capture antibodies to the target antigen was mainly used for the measurement. However, by considering the effect of viscosity penetration, it was found that the antigen–antibody reaction could be measured and the detection characteristics of the biosensor could be improved. Therefore, this study aims to evaluate the detection properties of SH-SAW biosensors in the surface height direction by investigating the relationship between molecular dimensions and SH-SAW propagation characteristics, which are pseudo-changed by varying the diameter of gold nanoparticles. For the evaluation, we introduced a layer parameter defined by the ratio of the SH-SAW amplitude change to the SH-SAW velocity change caused by the antigen–antibody reaction. We found a correlation between the layer parameter and pseudo-varied molecular dimensions. The results suggest that SH-SAW does not only measure the mass and viscosity but can also measure the size of the molecule to be detected. This shows that SH-SAW biosensors can be used for advanced functionality.


2009 ◽  
Vol 76 (4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Marina Georgalaki ◽  
Marina Papadelli ◽  
Elina Chassioti ◽  
Rania Anastasiou ◽  
Anastassios Aktypis ◽  
...  

ABSTRACT The aim of the present work was to study the mode of the induction of the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Macedocin was produced when the strain was grown in milk but not in MRS or M17 broth. No autoinduction mechanism was observed. Production did not depend on the presence of lactose or galactose in the culture medium or on a coculture of the producer strain with macedocin-sensitive or macedocin-resistant strains. Induction seemed to depend on the presence of one or more heat-stable protein components produced when S. macedonicus ACA-DC 198 was grown in milk. The partial purification of the induction factor was performed by a combination of chromatography methods, and its activity was confirmed by a reverse transcription-PCR approach (RT-PCR). Mass spectrometric (MS) and tandem mass spectrometric (MS/MS) analyses of an induction-active fraction showed the presence of several peptides of low molecular mass corresponding to fragments of αS1- and β-casein as well as β-lactoglobulin. The chemically synthesized αS1-casein fragment 37-55 (2,253.65 Da) was proven to be able to induce macedocin biosynthesis. This is the first time that milk protein degradation fragments are reported to exhibit a bacteriocin induction activity.


Sign in / Sign up

Export Citation Format

Share Document