scholarly journals THE IN VIVO INTERACTION BETWEEN STAPHYLOCOCCUS BACTERIOPHAGE AND STAPHYLOCOCCUS AUREUS

1963 ◽  
Vol 118 (1) ◽  
pp. 13-26 ◽  
Author(s):  
P. F. Bartell ◽  
I. S. Thind ◽  
T. Orr ◽  
W. S. Blakemore

Staphylococcus bacteriophage 81 is capable of in vivo interaction with Staphylococcus aureus, Type 80/81. This is immediately made evident by increased levels of bacteriophage and concomitant survival of 81 per cent infected mice. The reaction is dependent upon the use of active, type-specific bacteriophage. The maximal protective effect is observed at a bacteriophage to bacteria ratio of 1:2 and decreased quantities of bacteriophage result in decreased protection. Time and sequence of administration are also determining factors. It is evident that bacteriophage administered intravenously is capable of interaction with the infecting bacterial cell at the site of infection. In vivo produced bacteriophage is apparently eliminated or otherwise rendered nondetectable fairly rapidly, occurring within a period of 5 to 10 days. However, it appears that host defense mechanisms are stimulated in the process and actively play a protective role against subsequent challenge inocula administered up to 3 weeks later.

1980 ◽  
Vol 6 (suppl A) ◽  
pp. 55-61 ◽  
Author(s):  
J. Klastersky ◽  
H. Gaya ◽  
S. H. Zinner ◽  
C. Bernard ◽  
J-C. Ryff ◽  
...  

Author(s):  
Yao Hu ◽  
Wen Zhou ◽  
Chengguang Zhu ◽  
Yujie Zhou ◽  
Qiang Guo ◽  
...  

Smoking is considered a key risk factor for implant survival; however, how it interacts with the pathogens in peri-implant infections is not clear. Here, we identified that nicotine, the key component of cigarette smoking, can interact with Staphylococcus aureus and synergistically induce peri-implant infections in a rat osteolysis model. The nicotine–S. aureus combination group increased the gross bone pathology, osteolysis, periosteal reactions, and bone resorption compared to the nicotine or S. aureus single treated group (p < 0.05). Nicotine did not promote the proliferation of S. aureus both in vitro and in vivo, but it can significantly upregulate the expression of staphylococcal protein A (SpA), a key virulence factor of S. aureus. The nicotine–S. aureus combination also synergistically activated the expression of RANKL (receptor activator of nuclear factor-kappa B ligand, p < 0.05) to promote the development of peri-implant infections. The synergistic effects between nicotine and S. aureus infection can be a new target to reduce the peri-implant infections.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Panchanan Pramanik ◽  
Somenath Roy

Staphylococcus aureus infection causes oxidative stress in neutrophils. The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. The present study was aimed to test the protective role of nanoconjugated vancomycin against vancomycin-sensitive Staphylococcus aureus (VSSA) and vancomycin-resistant Staphylococcus aureus (VRSA) infection induced oxidative stress in neutrophils. VSSA- and VRSA-infection were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was treated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was treated to VSSA and VRSA infected mice at similar dose, respectively, for 10 days. The result reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, and nitrite generation and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group; which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These finding suggests the potential use and beneficial protective role of nanoconjugated vancomycin against VSSA and VRSA infection induced oxidative imbalance in neutrophils.


2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


2022 ◽  
Vol 23 (2) ◽  
pp. 948
Author(s):  
Urszula Wójcik-Bojek ◽  
Barbara Różalska ◽  
Beata Sadowska

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


1966 ◽  
Vol 12 (1) ◽  
pp. 35-42 ◽  
Author(s):  
J. A. Yurchenco ◽  
M. W. Hopper ◽  
G. H. Warren

An in vivo procedure is described for determining the relative sensitivities of potassium penicillin G and three semisynthetic penicillins to degradation by Bacillus cereus and Staphylococcus aureus penicillinases. The inactivating concentrations (IC50) of the penicillinases necessary to reduce the protective activity of each of the penicillins against an S. aureus infection in mice from PD95 to a PD50 level was determined. Conventional in vitro studies were carried out for purposes of comparison. After interaction with B. cereus penicillinase, Wy-3206 [6-(2-methoxy-1-naphthamido) penicillanic acid] had the greatest residual therapeutic activity, followed in order by nafcillin [6-(2-ethoxy-1-naphthamido)penicillanic acid], methicillin [sodium 6-(2, 6-dimethoxybenzamido)penicillinate monohydrate], and potassium penicillin G. Penicillin G proved to be the most sensitive to enzymatic degradation by S. aureus penicillinase, whereas nafcillin and methicillin were resistant to the highest concentration employed. These findings were, in general, supported by the in vitro results.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 894
Author(s):  
Hari Peguda ◽  
Saabah Mahbub ◽  
Tashi Sherpa ◽  
Dinesh Subedi ◽  
Abbas Habibalahi ◽  
...  

Acanthamoeba Keratitis (AK) can lead to substantial vision loss and morbidity among contact lens wearers. Misdiagnosis or delayed diagnosis is a major factor contributing to poor outcomes of AK. This study aimed to assess the effect of two antibiotics and one anaesthetic drug used in the diagnosis and nonspecific management of keratitis on the autofluorescence patterns of Acanthamoeba and two common bacteria that may also cause keratitis. Acanthamoeba castellanii ATCC 30868, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus ATCC 6538 were grown then diluted in either PBS (bacteria) or ¼ strength Ringer’s solution (Acanthamoeba) to give final concentrations of 0.1 OD at 660 nm or 104 cells/mL. Cells were then treated with ciprofloxacin, tetracycline, tetracaine, or no treatment (naïve). Excitation–emission matrices (EEMs) were collected for each sample with excitation at 270–500 nm with increments in 5 nm steps and emission at 280–700 nm at 2 nm steps using a Fluoromax-4 spectrometer. The data were analysed using MATLAB software to produce smoothed color-coded images of the samples tested. Acanthamoeba exhibited a distinctive fluorescence pattern compared to bacteria. The addition of antibiotics and anaesthetic had variable effects on autofluorescence. Tetracaine altered the fluorescence of all three microorganisms, whereas tetracycline did not show any effect on the fluorescence. Ciprofloxacin produced changes to the fluorescence pattern for the bacteria, but not Acanthamoeba. Fluorescence spectroscopy was able to differentiate Acanthamoeba from P. aeruginosa and S. aureus in vitro. There is a need for further assessment of the fluorescence pattern for different strains of Acanthamoeba and bacteria. Additionally, analysis of the effects of anti-amoebic drugs on the fluorescence pattern of Acanthamoeba and bacteria would be prudent before in vivo testing of the fluorescence diagnostic approach in the animal models.


Sign in / Sign up

Export Citation Format

Share Document