scholarly journals THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES

1965 ◽  
Vol 121 (1) ◽  
pp. 153-170 ◽  
Author(s):  
Zanvil A. Cohn ◽  
Belinda Benson

The in vitro differentiation of homogeneous populations of monocyte-like cells from the unstimulated mouse peritoneal cavity is described. Under the conditions employed, a progressive increase in cell size occurs without significant cell division. This process is characterized morphologically by the accumulation of phase-dense and neutral red-positive granules, mitochondria, and lipid droplets. The phase-dense granules react strongly for acid phosphatase. Biochemical determinations indicate marked increases in the total content and specific activity of acid phosphatase, cathepsin, and ß-glucuronidase. The production of acid phosphatase is more rapid and extensive than that of the other two hydrolases. From these data it appears that the conversion of a monocyte-like cell to a mature macrophage is accompanied by the formation of increased numbers of lysosome-like cytoplasmic organelles. Mouse peritoneal phagocytes stimulated in vivo with a bacterial lipopolysaccharide undergo a similar series of morphological and biochemical events.

2016 ◽  
Vol 26 (1) ◽  
pp. 15-23
Author(s):  
Saima Khan ◽  
Meenu Katoch ◽  
Sharada Mallubhotla ◽  
Suphla Gupta ◽  
Manju Sambyal ◽  
...  

The potential of various culture lines of Atropa acuminata were investigated for resourcing acid phosphatase (ACP) (3.1.3.2). Crude enzyme extract comprised of a mixture of four isoforms, distinguishable by polyacrylamide gel electrophoresis (PAGE) with molecular weight ranging from 39 to 215 kDa. In vitro regenerated proliferative shoots, callus and roots showed higher specific activity (2.49, 3.41, 2.91 U/mg protein, respectively) as compared to in vivo grown plants (0.71 U/mg protein). ACP activity in root cultures increased progressively up to 4.6 U/mg during the entire growth period (2 ? 24 weeks), whereas in case of shoot cultures, the specific activity escalated to 2.49 U/mg at 8 weeks, which then declined subsequently (1.95 U/mg). Similarly, callus cultures initially showed a higher phosphohydrolytic activity (3.41 U/mg protein) until 8 weeks by which period, it decreased with the passage of growth period. The present studies reveal an alternate system for resourcing of ACP from Atropa acuminata.Plant Tissue Cult. & Biotech. 26(1): 15-23, 2016 (June)


Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 141-148 ◽  
Author(s):  
J. M. W. Slack ◽  
B. G. Darlington ◽  
L. L. Gillespie ◽  
S. F. Godsave ◽  
H. V. Isaacs ◽  
...  

In early amphibian development, the mesoderm is formed around the equator of the blastula in response to an inductive signal from the endoderm. A screen of candidate substances showed that a small group of heparin-binding growth factors (HBGFs) were active as mesoderm-inducing agents in vitro. The factors aFGF, bFGF, kFGF and ECDGF all show similar potency and can produce inductions at concentrations above about 100 pM. The product of the murine int-2 gene is also active, but with a lower specific activity. Above the induction threshold there is a progressive increase of muscle formation with dose. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues. All inner blastula cells are competent to respond to the factors but outer cells, bearing oocyte-derived membrane, are not. Inducing activity can be extracted from Xenopus blastulae and binds to heparin like the previously described HBGFs. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin. The competence of ectoderm to respond to HBGFs rises from about the 128-cell stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of relative molecular mass about 130 × 103. The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro. In the embryo, the induction in the vicinity of the dorsal meridian is much more potent than that around the remainder of the marginal zone circumference. Dorsal inductions contain notochord and will dorsalize ventral mesoderm with which they are later placed in contact. This effect might be due to a local high bFGF concentration or, more likely, to the secretion in the dorsal region of an additional, synergistic factor. It is known that TGF-β-1 and -2 can greatly increase the effect of low doses of bFGF, although it has not yet been demonstrated that they are present in the embryo. Lithium salts have a dorsalizing effect on whole embryos or on explants from the ventral marginal zone, and also show potent synergism when applied together with HBGFs.


1965 ◽  
Vol 121 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Zanvil A. Cohn ◽  
Belinda Benson

The influence of selected inhibitors of protein synthesis on the in vitro differentiation of mouse mononuclear phagocytes has been investigated. DL-p-Fluorophenylalanine at concentrations of 250 µg/ml inhibits the formation of three lysosomal hydrolases, cytochemically demonstrable acid phosphatase and osmiophilic, phase-dense granules. These effects occur in the absence of cell death and are reversed by L-phenylalanine. Puromycin at concentrations of 0.2 to 0.4 µg/ml has a similar effect on both the morphology and biochemistry of cell maturation. Colchicine at a concentration of 0.05 µg/ml inhibits the growth in cell diameter and has less of an effect on enzyme production. Cells exposed to leucine-H3 for 2 to 3 minutes exhibit the localization of grains in the perinuclear-dense granule region. After an exposure of 60 minutes a similar localization is evident but with a correspondingly greater number of grains. A similar localization of grains occurs when choline-methyl-H3 is employed as a tracer. The data suggest the storage of newly formed protein and possibly phospholipid in the centrosphere region.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff–Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity and radiochemical purity, were evaluated by high-performance liquid chromatography (HPLC). Radiochemical concentration was determined by radioactivity calibrator. Metabolic kinetics and the level of 18F-deoxy-thiamine in brains of mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, and biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter, respectively. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 min after injection as represented by the area under the curve (AUC) and blood thiamine levels was investigated. Results The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61 ± 0.53 in the liver within 1 min, 18.67 ± 7.04 in the kidney within half a minute. The SUV dropped to 0.72 ± 0.05 and 0.77 ± 0.35 after 60 min of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 min after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 min was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = − 0.985, p = 0.015). Conclusion The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


1998 ◽  
Vol 26 (5) ◽  
pp. 679-708 ◽  
Author(s):  
Horst Spielmann ◽  
Michael Balls ◽  
Jack Dupuis ◽  
Wolfgang J. W. Pape ◽  
Odile de Silva ◽  
...  

In 1996, the Scientific Committee on Cosmetology of DGXXIV of the European Commission asked the European Centre for the Validation of Alternative Methods to test eight UV filter chemicals from the 1995 edition of Annex VII of Directive 76/768/EEC in a blind trial in the in vitro 3T3 cell neutral red uptake phototoxicity (3T3 NRU PT) test, which had been scientifically validated between 1992 and 1996. Since all the UV filter chemicals on the positive list of EU Directive 76/768/EEC have been shown not to be phototoxic in vivo in humans under use conditions, only negative effects would be expected in the 3T3 NRU PT test. To balance the number of positive and negative chemicals, ten phototoxic and ten non-phototoxic chemicals were tested under blind conditions in four laboratories. Moreover, to assess the optimum concentration range for testing, information was provided on appropriate solvents and on the solubility of the coded chemicals. In this study, the phototoxic potential of test chemicals was evaluated in a prediction model in which either the Photoirritation Factor (PIF) or the Mean Photo Effect (MPE) were determined. The results obtained with both PIF and MPE were highly reproducible in the four laboratories, and the correlation between in vitro and in vivo data was almost perfect. All the phototoxic test chemicals provided a positive result at concentrations of 1μg/ml, while nine of the ten non-phototoxic chemicals gave clear negative results, even at the highest test concentrations. One of the UV filter chemicals gave positive results in three of the four laboratories only at concentrations greater than 100μg/ml; the other laboratory correctly identified all 20 of the test chemicals. An analysis of the impact that exposure concentrations had on the performance of the test revealed that the optimum concentration range in the 3T3 NRU PT test for determining the phototoxic potential of chemicals is between 0.1μg/ml and 10μg/ml, and that false positive results can be obtained at concentrations greater than 100μg/ml. Therefore, the positive results obtained with some of the UV filter chemicals only at concentrations greater than 100μg/ml do not indicate a phototoxic potential in vivo. When this information was taken into account during calculation of the overall predictivity of the 3T3 NRU PT test in the present study, an almost perfect correlation of in vitro versus in vivo results was obtained (between 95% and 100%), when either PIF or MPE were used to predict the phototoxic potential. The management team and participants therefore conclude that the 3T3 NRU PT test is a valid test for correctly assessing the phototoxic potential of UV filter chemicals, if the defined concentration limits are taken into account.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (> or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1862-1872 ◽  
Author(s):  
M Introna ◽  
VV Alles ◽  
M Castellano ◽  
G Picardi ◽  
L De Gioia ◽  
...  

Abstract Pentraxins, which include C reactive protein (CRP) and serum amyloid P component (SAP), are prototypic acute phase reactants that serve as indicators of inflammatory reactions. Here we report genomic and cDNA cloning of mouse ptx3 (mptx3), a member of the pentraxin gene family and characterize its extrahepatic expression in vitro and in vivo. mptx3 is organized into three exons on chromosome 3: the first (43 aa) and second exon (175 aa) code for the signal peptide and for a protein portion with no high similarity to known sequences the third (203 aa) for a domain related to classical pentraxins, which contains the “pentraxin family signature.” Analysis of the N terminal portion predicts a predominantly alpha helical structure, while the pentraxin domain of ptx3 is accommodated comfortably in the tertiary structure fold of SAP. Normal and transformed fibroblasts, undifferentiated and differentiated myoblasts, normal endothelial cells, and mononuclear phagocytes express mptx3 mRNA and release the protein in vitro on exposure to interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF)alpha. mptx3 was induced by bacterial lipopolysaccharide in vivo in a variety of organs and, most strongly, in the vascular endothelium of skeletal muscle and heart. Thus, mptx3 shows a distinct pattern of in vivo expression indicative of a significant role in cardiovascular and inflammatory pathology.


Sign in / Sign up

Export Citation Format

Share Document