scholarly journals Identification of a B-cell surface structure involved in antigen-dependent triggering: absence of this structure on B cells from CBA/N mutant mice.

1977 ◽  
Vol 145 (1) ◽  
pp. 10-20 ◽  
Author(s):  
B Huber ◽  
R K Gershon ◽  
H Cantor

CBA/N mice have an X-linked B-cell maturation defect which is reflected in part in an absence or dysfunction of a subclass of mature B cells. We have immunized the defective male offspring of the mating (CBA/N female X BALB/c male) with BALB/c spleen cells. The resulting antiserum (alphaLyb3) selectively reacts with a component on the surface of a portion of B cells from a panel of H-2 different mouse strains. Binding of alphaLyb3 serum to this B-cell subclass results in substantial (10- to 20-fold) enhancement of the antibody response to low doses of SRBC. Both binding and enhancing activity are removed by absorption with B cells from B6 and BALB/c, but not CBA/N mice. Absorption of the serum with bone marrow cells, T cells, or thymocytes from Lyb3+ strains does not remove activity. Since the enhanced plaque-forming cell (PFC) responses are specific for the immunizing antigen, and since no PFC response is produced by injection of the antiserum alone, this enhancement probably reflects a second signal produced by specific interaction between antibody and the surface Lyb3 component. Moreover, this signal can partially replace the requirement for T cells in the production of antibody to a "thymus-dependent" antigen. These findings (taken in conjunction with the previously described immune defects in CBA/N mice and other studies of B-cell maturation) suggest to us that Lyb3 is a cell surface component expressed selectively on a mature B-cell subclass. This component is important in B-cell triggering by antigen and fails to develop in CBA/N mice, due to a dysfunction of a regulatory gene on the CBA/N X chromosome.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2752-2752
Author(s):  
Alina E Dulau Florea ◽  
Raul C Braylan ◽  
Kristian T. Schafernak ◽  
Stefania Pittaluga ◽  
Steven M. Holland ◽  
...  

Abstract Background Autosomal dominant germline mutations in the phosphatidylinositol-3-OH kinase (PIK3CD) encoding for the PI(3)K catalytic subunit p110δ, lead to combined immunodeficiency with increased incidence of B-cell lymphomas. (Lucas CL et.al. Nature Immunology 2014). While p110δ is selectively expressed in leukocytes, it is critical for TCR and BCR signaling and lymphocyte homeostasis. Clinically, these patients may present with sinopulmonary infections, bronchiectasis, cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV) viremia, lymphoproliferation and autoimmune cytopenias. Immune phenotype includes naïve CD4+ T cell lymphopenia, expanded terminally differentiated or exhausted T cells, increased circulating transitional B cells and reduced class-switched memory B cells. Herein we report immunophenotypic abnormalities in B-lymphoid maturation in the bone marrow (BM) of 5 patients with PIK3CD mutations. Methods BM from 5 patients with PIK3CD mutations (2 males, 3 females, age range: 4–15 years, median 11.5 years) were studied by flow cytometry (FC), morphology and immunohistochemistry (IHC). BM aspirate from 5 healthy age matched pediatric patients were used as controls for flow cytometric analysis of B-cell subsets and maturation. Antibodies against CD45, CD3, CD4, CD8, CD19, CD10, CD34, CD20, and surface kappa and lambda light chains were used for FC. B-lymphocyte subsets were defined as: early stage precursor B-cells (CD34+/CD19+/CD10+bright/CD20-); intermediate precursor B-cells (CD45+moderate/ CD19+/CD10+moderate/CD34-); and late stage and mature B cells (CD34-/CD10-/CD19+/CD45+bright/CD20+). The intermediate subset corresponds to transitional B cells (developmentally intermediate between immature and mature naive B cells). IHC and in situ hybridization staining were applied to biopsy sections using standard methods. Prism software was used for statistical analyses (Mann-Whitney test). Results There was no significant difference in the median percentage of early B-cell precursors (among all B-lymphocytes) between the PIK3CD patients and the age-matched controls (3.6% vs. 3.7%; p=0.8). However, all PIK3CD marrows showed expanded CD10+ intermediate precursor B-cells which were overall 2.5 times more abundant in PIK3CD marrows than in controls (94.6% vs. 37.4% of all B-cells; p<0.01). Additionally, the PIK3CD patients showed a marked reduction in mature B-cells with 29 times fewer mature CD20+/CD10- B-cells than controls (2% vs 57%; p<0.01). These differences resulted in a markedly abnormal B-cell maturation pattern in all PIK3CD patients (Figs. A and B). A subset of CD10+ and bright CD20+ B-cells expressed polytypic light chains in the PIK3CD marrows. The median CD4:CD8 T-cell ratio was 0.32 in PIK3CD marrows with markedly reduced CD4+ T-cells. BM core biopsies showed overall normal cellularity with increased lymphocytes (20-30% of the cellular marrow). IHC revealed increased CD20+ lymphocytes (15-20% of all nucleated cells) and CD10+ lymphocytes showed similar distribution suggesting coexpression with CD20. TdT and CD34 highlighted approximately 5% of all nucleated cells. CD138, and kappa and lambda light chains showed unremarkable scattered polytypic plasma cells. CD3+ and CD8+ T-cells accounted for 5-10% of BM cells and CD4+ lymphocytes were reduced. EBV was positive in one case. CMV was negative in all cases. Conclusions For the first time, we report B-cell maturation abnormalities in the bone marrow of patients with germline mutations in PIK3CD. All marrows showed an abnormal pattern of B cell maturation characterized by an absolute increase in CD10+ intermediate precursor B-cells and a marked decrease in mature B-cells. The findings suggest either a partial block in B-cell late stage maturation or other mechanism leading to increased CD10+ B-cell precursors and markedly reduced mature B-cells. Lymphoid hyperplasia and lymphoma have been described in PIK3CD patients. The increased CD10+ B cell precursors and the abnormal maturation pattern noted by flow cytometry may mimic CD10+ B-cell neoplasia (e.g. acute lymphoblastic leukemia or Burkitt lymphoma) but detailed analysis showed no morphologic or immunophenotypic evidence of B-cell neoplastic involvement in any of the five patients studied. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1714-1714
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Tim H Chen ◽  
Matthew J. Walter

Abstract Abstract 1714 Patients with myelodysplastic syndromes (MDS) have a clonal hematopoietic stem cell disorder that results in dysplastic hematopoietic cells in their bone marrow as well as peripheral blood cytopenias. In addition to the commonly described erythroid and myeloid differentiation defects associated with MDS, a reduction in bone marrow B-cell progenitors exists in patients. The genetic events contributing to the reduction in B-cell progenitors remain poorly understood. The most common cytogentic abnormality identified in patients with MDS, occurring in approximately 35% of patients, is heterozygous interstitial deletion or loss of the long arm of chromosome 5 (5q). The interstitial deletions on chromosome 5 are single copy losses, and no biallelic disruptions of genes in deleted regions have been identified, implicating haploinsufficiency as the underlying genetic mechanism. We, and others, have shown that the levels of HSPA9 mRNA expression are reduced ∼50% in patients with del(5q) when compared to MDS patients without del(5q), consistent with a haploinsufficient phenotype. To model haploinsufficiency, we used shRNA to achieve ∼50% knockdown of Hspa9 in a murine bone marrow transplant model. This model showed a significant reduction in mature B-cells in the bone marrow, spleen, and peripheral blood of recipient mice, implicating HSPA9 haploinsufficiency may contribute to the B-cell alterations observed in MDS patients with del(5q). To further evaluate HSPA9 haploinsufficiency in vivo, we created a mouse model with a heterozygous deletion of Hspa9 (Hspa9+/−) and confirmed a 50% reduction in Hspa9 protein levels in bone marrow and spleen of these mice by Western blot. Hspa9+/− mice are born at normal Mendelian frequencies (N>100), however, breeding heterozygous mice suggests Hspa9−/− mice are embryonic lethal (24 Hspa9+/+:38 Hspa9+/−:0 Hspa9−/−). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, the numbers of bone marrow CFU-preB colonies as assessed by methylcellulose assay, are significantly reduced in Hspa9+/− mice compared to Hspa9+/+ littermates (14 vs 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.0001). We performed noncompetitive bone marrow transplants of Hspa9+/− or Hspa9+/+ donor cells into Hspa9+/+ recipient mice and confirmed that the reduction of B-cell progenitors is a hematopoietic cell intrinsic phenotype (N=7–9 mice/genotype, p=0.002). We also confirmed that the Hspa9+/− bone marrow microenvironment did not contribute to the phenotype as transplantation of Hspa9+/+ donor bone marrow cells into Hspa9+/− recipients did not alter the number of CFU-preB colonies (N=5). Total frequencies of common lymphoid progenitors and B-cell precursors (Hardy fractions A, B/C, D, E and F) as assessed by flow cytometry are no different in Hspa9+/− and Hspa9+/+ mice. Therefore, we hypothesize that early Hspa9+/− B-cells may have an intrinsic signaling defect which can be compensated for in vivo. Early B-cell maturation is dependent on intracellular signaling mediated through cell surface receptors in response to environmental cytokines. Consistent with our hypothesis, we showed that Hspa9+/− CFU-preB in vitro colony formation is partially rescued by increasing concentrations of IL7 while Hspa9+/+ colony numbers remain unchanged (fold change in colony formation from 10ng/mL to 50ng/mL IL7 was 1.80 for Hspa9+/− vs. 0.80 for Hspa9+/+, p=0.03, N=6 mice/genotype). Supplementation of the media with another cytokine that contributes to early B-cell maturation, Flt3 ligand, does not alter Hspa9+/− or Hspa9+/+ CFU-preB colony formation, further implicating altered IL7 signaling. We are currently investigating the downstream responses to IL7 stimulation in B-cell progenitors from Hspa9+/− mice. Collectively, these data implicate loss of HSPA9 as a contributing factor in the reduction of B-cell progenitors observed in patients with del(5q) associated MDS. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Supranee Buranapraditkun ◽  
Franco Pissani ◽  
Jeffrey E. Teigler ◽  
Bruce T. Schultz ◽  
Galit Alter ◽  
...  

ABSTRACT The maturation process of high-affinity antibodies is a result of intricate interactions between B cells and follicular helper T (Tfh) cells occurring in lymphoid germinal centers. HIV infection induces significant chronic immune activation, phenotypic skewing, and inflammation driven by years of continuous viral replication. High levels of viremia as well as immune activation and dysfunction have been demonstrated to have a perturbing impact on the B cell memory compartment and contribute to B cell exhaustion. Counterintuitively, the factors associated with perturbation of the B cell compartment seem to be favorable for the generation of highly affinity-matured Env-specific antibodies in a minority of HIV-infected individuals. Thus, the impact of HIV antigenemia on B cells and Tfh cell interactions warrants further exploration. We therefore studied immunophenotypes of HIV-specific B cells in individuals with differing levels of viral control using HIV Env gp120 probes and characterized the functionality of matched T cells in peripheral blood. While CXCR5+ CD4+ T cells were significantly diminished in HIV progressors, we found that a small subset of gp120-specific interleukin-21 (IL-21)-secreting CXCR5+ CD4+ T cells were significantly associated with gp120-specific B cell frequencies. In contrast, neither bulk CXCR5+ CD4+ T cells nor other HIV antigen specificities were associated with gp120-specific B cell levels. HIV-specific B cells derived from elite controllers displayed greater amounts of gp120-specific B cells in the resting memory subset, whereas HIV-specific B cells in progressors accumulated in tissue-like and activated memory subsets. Furthermore, CXCR5+ CD4+ T cells from elite controllers showed a stronger ex vivo capacity to induce B cell maturation and immunoglobulin class switching than cells from HIV progressors. IMPORTANCE Dissecting the factors that are involved in B cell maturation and antibody development is important for HIV vaccine design. In this study, we found that HIV Env-specific CXCR5+ CD4+ T cells that secrete interleukin-21 are strongly associated with B cell memory phenotypes and function. Moreover, we found that the immune responses of HIV controllers showed intrinsically better helper activity than those of HIV progressors.


2018 ◽  
Author(s):  
Henia Dar ◽  
Daniel Henderson ◽  
Zinkal Padalia ◽  
Ashley Porras ◽  
Dakai Mu ◽  
...  

2018 ◽  
Vol 36 (22) ◽  
pp. 2267-2280 ◽  
Author(s):  
Jennifer N. Brudno ◽  
Irina Maric ◽  
Steven D. Hartman ◽  
Jeremy J. Rose ◽  
Michael Wang ◽  
...  

Purpose Therapies with novel mechanisms of action are needed for multiple myeloma (MM). T cells can be genetically modified to express chimeric antigen receptors (CARs), which are artificial proteins that target T cells to antigens. B-cell maturation antigen (BCMA) is expressed by normal and malignant plasma cells but not normal essential cells. We conducted the first-in-humans clinical trial, to our knowledge, of T cells expressing a CAR targeting BCMA (CAR-BCMA). Patients and Methods Sixteen patients received 9 × 106 CAR-BCMA T cells/kg at the highest dose level of the trial; we are reporting results of these 16 patients. The patients had a median of 9.5 prior lines of MM therapy. Sixty-three percent of patients had MM refractory to the last treatment regimen before protocol enrollment. T cells were transduced with a γ-retroviral vector encoding CAR-BCMA. Patients received CAR-BCMA T cells after a conditioning chemotherapy regimen of cyclophosphamide and fludarabine. Results The overall response rate was 81%, with 63% very good partial response or complete response. Median event-free survival was 31 weeks. Responses included eradication of extensive bone marrow myeloma and resolution of soft-tissue plasmacytomas. All 11 patients who obtained an anti-MM response of partial response or better and had MM evaluable for minimal residual disease obtained bone marrow minimal residual disease–negative status. High peak blood CAR+ cell levels were associated with anti-MM responses. Cytokine-release syndrome toxicities were severe in some cases but were reversible. Blood CAR-BCMA T cells were predominantly highly differentiated CD8+ T cells 6 to 9 days after infusion. BCMA antigen loss from MM was observed. Conclusion CAR-BCMA T cells had substantial activity against heavily treated relapsed/refractory MM. Our results should encourage additional development of CAR T-cell therapies for MM.


2020 ◽  
Vol 4 (18) ◽  
pp. 4538-4549 ◽  
Author(s):  
Kodandaram Pillarisetti ◽  
Gordon Powers ◽  
Leopoldo Luistro ◽  
Alexander Babich ◽  
Eric Baldwin ◽  
...  

Abstract B-cell maturation antigen (BCMA), a member of the tumor necrosis factor family of receptors, is predominantly expressed on the surface of terminally differentiated B cells. BCMA is highly expressed on plasmablasts and plasma cells from multiple myeloma (MM) patient samples. We developed a BCMAxCD3 bispecific antibody (teclistamab [JNJ-64007957]) to recruit and activate T cells to kill BCMA-expressing MM cells. Teclistamab induced cytotoxicity of BCMA+ MM cell lines in vitro (H929 cells, 50% effective concentration [EC50] = 0.15 nM; MM.1R cells, EC50 = 0.06 nM; RPMI 8226 cells, EC50 = 0.45 nM) with concomitant T-cell activation (H929 cells, EC50 = 0.21 nM; MM.1R cells, EC50 = 0.1 nM; RPMI 8226 cells, EC50 = 0.28 nM) and cytokine release. This activity was further increased in the presence of a γ-secretase inhibitor (LY-411575). Teclistamab also depleted BCMA+ cells in bone marrow samples from MM patients in an ex vivo assay with an average EC50 value of 1.7 nM. Under more physiological conditions using healthy human whole blood, teclistamab mediated dose-dependent lysis of H929 cells and activation of T cells. Antitumor activity of teclistamab was also observed in 2 BCMA+ MM murine xenograft models inoculated with human T cells (tumor inhibition with H929 model and tumor regression with the RPMI 8226 model) compared with vehicle and antibody controls. The specific and potent activity of teclistamab against BCMA-expressing cells from MM cell lines, patient samples, and MM xenograft models warrant further evaluation of this bispecific antibody for the treatment of MM. Phase 1 clinical trials (monotherapy, #NCT03145181; combination therapy, #NCT04108195) are ongoing for patients with relapsed/refractory MM.


Gut ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2203-2213 ◽  
Author(s):  
Anton Lutckii ◽  
Benedikt Strunz ◽  
Anton Zhirkov ◽  
Olga Filipovich ◽  
Elena Rukoiatkina ◽  
...  

ObjectivesVertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates.DesignTo address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age.ResultsAs expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines.ConclusionOur data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.


2000 ◽  
Vol 192 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Jeffrey S. Thompson ◽  
Pascal Schneider ◽  
Susan L. Kalled ◽  
LiChun Wang ◽  
Eric A. Lefevre ◽  
...  

The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor–triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3078-3078
Author(s):  
Diane L Rossi ◽  
Edmund A Rossi ◽  
David M Goldenberg ◽  
Chien-Hsing Chang

Abstract Background Various formats of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise both pre-clinically and clinically. The scFv-based constructs, including BiTE and DART, which bind monovalently to CD3 on T cells and to the target antigen on tumor cells, exhibit fast blood clearance and neurological toxicity due to their small size (∼55 kDa). Herein, we describe the generation of novel T-cell redirecting trivalent bsAbs comprising an anti-CD3 scFv covalently conjugated to a stabilized F(ab)2. The design was initially characterized with a prototype construct designated (19)-3s, which specifically targets CD19 on B cells. A panel of trivalent bsAbs was evaluated for their potential use in targeted T-cell immunotherapy of various B-cell malignancies. Potential advantages of this design include bivalent binding to tumor cells, a larger size (∼130 kDa) to preclude rapid renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. Methods The DOCK-AND-LOCKTM (DNLTM) method was used to generate a panel of B-cell targeting bsAbs, (19)-3s, (20)-3s, (22)-3s, and (C2)-3s, which target CD19, CD20, CD22, and HLA-DR, respectively. This was achieved by combining a stabilized anti-X F(ab)2 with an anti-CD3-scFv, resulting in a homogeneous covalent structure of the designed composition, as shown by LC-MS, SE-HPLC, ELISA, SDS-PAGE, and immunoblot analyses. Each construct can mediate the formation of immunological synapses between T cells and malignant B cells, resulting in T-cell activation. At an E:T ratio of 10:1, using isolated T cells as effector cells, the bsAbs induced potent T-cell-mediated cytotoxicity in various B-cell malignancies, including Burkitt lymphomas (Daudi, Ramos, Namalwa), mantle cell lymphoma (Jeko-1), and acute lymphoblastic leukemia (Nalm-6). A non-tumor binding control, (14)-3s, induced only moderate T-cell killing at >10 nM. The nature of the antigen/epitope, particularly its size and proximity to the cell surface, appears to be more important than antigen density for T-cell retargeting potency (Table 1). It is likely that (20)-3s is consistently more potent than (19)-3s and (C2)-3s, even when the expression of CD19 or HLA-DR is considerably higher than CD20, as seen with Namalwa and Jeko-1, respectively. This is likely because the CD20 epitope comprises a small extracellular loop having close proximity to the cell surface. When compared directly using Daudi, (22)-3s was the least potent. Compared to CD19 and CD20, CD22 is expressed at the lowest density, is a rapidly internalizing antigen, and its epitope is further away from the cell surface; each of these factors may contribute to its reduced potency. Finally, sensitivity to T-cell retargeted killing is cell-line-dependent, as observed using (19)-3s, where Raji (IC50 >3 nM) is largely unresponsive yet Ramos (IC50 = 2 pM) is highly sensitive, even though the former expresses higher CD19 antigen density. Conclusions (19)-3s, (20)-3s, (22)-3s, and (C2)-3s can bind T cells and target B cells simultaneously and induce T-cell-mediated killing in vitro. The modular nature of the DNL method allowed the rapid production of several related conjugates for redirected T-cell killing of various B-cell malignancies, without the need for additional recombinant engineering and protein production. The close proximity of the CD20 extracellular epitope to the cell surface results in the highest potency for (20)-3s, which is an attractive candidate bsAb for use in this platform. We are currently evaluating the in vivo activity of these constructs to determine if this novel bsAb format offers additional advantages. Disclosures: Rossi: Immunomedics, Inc.: Employment. Rossi:Immunomedics, Inc.: Employment. Goldenberg:Immunomedics: Employment, stock options, stock options Patents & Royalties. Chang:Immunomedics, Inc: Employment, Stock option Other; IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other.


Sign in / Sign up

Export Citation Format

Share Document