scholarly journals Cytopathogenic mechanisms of Entamoeba histolytica.

1980 ◽  
Vol 152 (2) ◽  
pp. 377-390 ◽  
Author(s):  
J I Ravdin ◽  
B Y Croft ◽  
R L Guerrant

Cinemicrography of Entamoeba histolytica destruction of Chinese hamster ovary (CHO) cells shows that ameba cytopathogenicity consists of separate components: a contact-dependent cytolethal effect, and phagocytosis. Cells not in contact with amebae remain intact. Quantitation of ameba destruction of CHO cells by applying the one-hit hypothesis confirms that the cytoethal effect of amebae is contact dependent. Studies with 111Indium oxine-labeled cells provide further evidence of extracellular killing by E. histolytica and indicate that > 94% of the target cells are killed before phagocytosis. When we examined for a cytotoxin release by E. histolytica, we found no effect on CHO cells with filtrates of amebae, and a nonspecific effect of cell rounding and release with sonicates of amebae. The ameba sonicate effect was time-dose dependent, was not cytolethal, was reversible, and was inhibited by alpha II macroglobulin. Cytochalasin B altered ameba motility and morphology, and monolayer experiments confirmed that cytochalasins A, B, or D inhibited CHO cell destruction by E. histolytica. Cytochalasin D also inhibited extracellular killing of CHO cells by amebae in pellets, apparently independent of effects on ameba motility or phagocytosis. Colchicine and vinblastine, alone or in combination with cytochalasin D, did not inhibit E. histolytica cytopathogenicity, which indicates that microtubule function is not required for target cell killing by amebae.

2021 ◽  
Vol 22 (10) ◽  
pp. 5218
Author(s):  
Tomu Kamijo ◽  
Takahiro Kaido ◽  
Masahiro Yoda ◽  
Shinpei Arai ◽  
Kazuyoshi Yamauchi ◽  
...  

We identified a novel heterozygous hypofibrinogenemia, γY278H (Hiroshima). To demonstrate the cause of reduced plasma fibrinogen levels (functional level: 1.12 g/L and antigenic level: 1.16 g/L), we established γY278H fibrinogen-producing Chinese hamster ovary (CHO) cells. An enzyme-linked immunosorbent assay demonstrated that synthesis of γY278H fibrinogen inside CHO cells and secretion into the culture media were not reduced. Then, we established an additional five variant fibrinogen-producing CHO cell lines (γL276P, γT277P, γT277R, γA279D, and γY280C) and conducted further investigations. We have already established 33 γ-module variant fibrinogen-producing CHO cell lines, including 6 cell lines in this study, but only the γY278H and γT277R cell lines showed disagreement, namely, recombinant fibrinogen production was not reduced but the patients’ plasma fibrinogen level was reduced. Finally, we performed fibrinogen degradation assays and demonstrated that the γY278H and γT277R fibrinogens were easily cleaved by plasmin whereas their polymerization in the presence of Ca2+ and “D:D” interaction was normal. In conclusion, our investigation suggested that patient γY278H showed hypofibrinogenemia because γY278H fibrinogen was secreted normally from the patient’s hepatocytes but then underwent accelerated degradation by plasmin in the circulation.


1984 ◽  
Vol 4 (1) ◽  
pp. 173-180 ◽  
Author(s):  
S W Stanfield ◽  
D R Helinski

Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.


1990 ◽  
Vol 10 (10) ◽  
pp. 5160-5165
Author(s):  
S Ahmad ◽  
R Ahuja ◽  
T J Venner ◽  
R S Gupta

A major cellular protein (P2; approximately 70 kilodaltons) which is altered in Chinese hamster ovary (CHO) cell mutants resistant to the microtubule inhibitors colchicine and podophyllotoxin has been shown to correspond to the constitutive form of the 70-kilodalton heat shock protein (hsc70). The inference that P2 and hsc70 are the same protein is based on the following observations: (i) migration of P2 in two-dimensional polyacrylamide gels in the same position as that reported for hsc70; (ii) cross-reactivity of a monoclonal antibody which reacts with both the constitutive and induced forms of hsp70 with the P2 spot from wild-type CHO cells and with both P2 and a mutant form of P2 in a CHO cell mutant; (iii) specific reactivity of a polyclonal antibody to P2 with both the constitutive and heat-induced forms of hsp70 in human cells; (iv) identical immunofluorescent staining of dot/patchlike structures with both P2 and hsp70 antibodies in human and CHO cells; and (v) a cDNA clone for hsc70 has been isolated and sequenced from wild-type CHO cells. The in vitro transcription and translation product of this cDNA has been shown to comigrate with the P2 protein spot in two-dimensional gels, indicating their identity. The fact that there is an alteration in hsc70 in mutants resistant to antimitotic drugs suggests a role for this protein in the in vivo assembly and function of microtubules.


2002 ◽  
Vol 70 (8) ◽  
pp. 4571-4580 ◽  
Author(s):  
J. Morehead ◽  
I. Coppens ◽  
N. W. Andrews

ABSTRACT Lesions caused by Leishmania amazonensis normally heal, but relapses occur due to parasite persistence in host tissues. It has been proposed that infection of fibroblasts plays an important role in this process by providing the parasites with a safe haven in which to replicate. However, most previous studies have focused on the entry of Leishmania into macrophages, a process mediated by serum opsonins. To gain insight into a possible role of nonopsonic entry in the intracellular persistence of amastigotes, we examined the invasion of Chinese hamster ovary (CHO) cells. Amastigotes entered CHO cells by a cytochalasin D, genistein, wortmannin, and 2,3-butanedione monoxime-sensitive pathway and replicated within phagolysosomes. However, unlike most phagocytic processes described to date, amastigote internalization in CHO cells involved activation of the GTPases Rho and Cdc42 but not Rac-1. When uptake was mediated by fibronectin or when amastigotes were opsonized with immunoglobulin G and internalized by Fc receptor-expressing CHO cells, Rac-1 activation was restored and found to be required for parasite internalization. Given the essential role of Rac in assembly of the respiratory burst oxidase, invasion through this nonopsonic, Rac-1-independent pathway may play a central role in the intracellular survival of Leishmania in immune hosts.


1996 ◽  
Vol 313 (3) ◽  
pp. 991-996 ◽  
Author(s):  
Michael R. NARKEWICZ ◽  
S. David SAULS ◽  
Susan S. TJOA ◽  
Cecilia TENG ◽  
Paul V. FENNESSEY

Serine hydroxymethyltransferase (SHMT) is the primary enzyme in the interconversion of serine and glycine. The roles of mitochondrial and cytosolic SHMT in the interconversion of serine and glycine were determined in two Chinese hamster ovary (CHO) cell lines that both contain cytosolic SHMT but either have (CHOm+) or lack (CHOm-) mitochondrial SHMT. Mitochondrial SHMT activity was significantly reduced in CHOm- (0.24±0.11 nmol/min per mg of mitochondrial protein) compared with CHOm+ (3.21±0.66 nmol/min per mg of mitochondrial protein; P = 0.02) cells, whereas cytosolic SHMT activity was similar in CHOm- and CHOm+ cells (1.09±0.31 and 1.53±0.12 nmol/min per mg of cytosolic protein respectively; P = 0.57). In CHOm+ and CHOm- cells, the relative flux of glycine to serine measured with either [1-13C]- or [2-13C]-glycine was similar (CHOm-: 538±82 nmol/24 per mg of DNA; CHOm+: 616±88 nmol/24 h per mg of DNA; P = 0.42). In contrast, the relative flux of serine to glycine measured with [1-13C]serine was low in CHOm- cells (80±28 nmol/24 h per mg of DNA) compared with CHOm+ cells (3080±320 nmol/24 h per mg of DNA; P = 0.0001). The rate of glycine production determined by UA-2[1-13C]glycine dilution was lower in CHOm- (1200±200 nmol/24 h per mg of DNA) than CHOm+ (10200±1800 nmol/24 h per mg of DNA; P = 0.03) cells, whereas glycine utilization was similar in the two cell lines. Serine production was similar in the two cell lines but serine utilization was lower in CHOm- (3800±1200 μmol/24 h per mg of DNA) than CHOm+ (6600±1000 nmol/24 h per mg of DNA; P = 0.0002) cells. Increasing the serine concentration in the medium resulted in an increase in glycine production in CHOm+ but not in CHOm- cells. Intracellular studies with [1-13C]serine confirm the findings of decreased glycine production from serine. In CHO cells there is partitioning of intracellular serine and glycine metabolism. Our data support the hypothesis that mitochondrial SHMT is the primary pathway for serine into glycine interconversion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4082-4082
Author(s):  
Alfred Weber ◽  
Eva Minibeck ◽  
Peter L. Turecek ◽  
Hartmut J. Ehrlich ◽  
Hans Peter Schwarz

Abstract rVWF expressed in Chinese hamster ovary (CHO) cells can be hardly distinguished from pdVWF. This holds true for the primary amino acid sequence and for posttranslational modifications including N- and O-linked glycans. However, because CHO cells lack a a2,6-sialyltransferase, the enzyme attaching N-acetylneuraminic acid (Neu5Ac) in a a2,6- linkage to the galactose residues of complex N-glycans, Neu5Ac will be found in CHO-cell derived glycoproteins only in a2,3-linkage. We used this minute difference in glycosylation to develop a lectin-based immunoassay that allows the selective measurement of human rVWF in human plasma based on the lack of a2,6-bound Neu5Ac on rVWF. At equal VWF:Ag concentrations, mixtures of rVWF and pdVWF will show lower ratios of a2,6-bound Neu5Ac to VWF:Ag than those in pdVWF alone. The difference in ratio is directly related to the concentration of rVWF in the mixture. We used the Sambucs nigra agglutinin (SNA) to measure VWF-bound a2,6-linked Neu5Ac. This lectin binds to Neu5Ac on N-glycans only when Neu5Ac is a2,6-linked to galactose. rVWF/pdVWF was captured from the sample by a plate-immobilized polyclonal rabbit anti-VWF antibody. a2,6-bound Neu5Ac was then specifically detected using biotinylated SNA and streptavidin peroxidase. The assay setup resulted in a linear dose-response curve ranging from 0.2 to 2.9 mU pdVWF:Ag/mL in human plasma. In contrast, rVWF showed no binding, even when tested at concentrations about 100-times higher. Subjecting plate-adsorbed pdVWF to enzymatic desialylation with neuraminidase completely abrogated the binding of SNA. The linkage specificity of the SNA binding was shown in an inhibition study using the trisaccharides 3′-sialyllactose and 6′-sialyllactose as hapten sugars. As expected only 6′-sialyllactose proved able to inhibit the binding of SNA to plate-immobilized pdVWF. This result confirmed the linkage specificity of the SNA binding essential for the discrimination of plasma-derived and rVWF. To demonstrate the feasibility of this approach we spiked a sample of a normal human plasma pool with rVWF in several concentrations ranging from 0 to 1.5 IU/ml. In these samples the VWF:Ag concentrations and the levels of VWF-bound a2,6-Neu5Ac with the SNA binding assay were measured. Then, we calculated the ratio of SNA binding to VWF:Ag on the assumption that all VWF was pdVWF, i.e. contained only a2,6-linked Neu5Ac. The difference between the expected and the actually found ratios of SNA binding to VWF:Ag correlated (R2=0.99) with the amount of rVWF present in the mixtures. Thus, we obtained a calibration curve that allowed the specific measurement of rVWF in a range of 0.2 to 1.5 IU/ml in the presence of 1 IU/ml pdVWF. Both assays, the VWF:Ag ELISA and the SNA-based immunoassay for the measurement of VWF-bound a2,6-bound Neu5Ac, showed acceptable precision. The data show that rVWF in a human plasma sample can readily be differentiated from endogenous pdVWF based on minute, linkage-specific differences of the N-glycan structures. This type of lectin-based immunoassay could be useful in the clinical setting to determine the circulating concentration of therapeutic CHO-cell-derived rVWF and to specifically measure its concentration in the presence of the endogenous glycoprotein.


1980 ◽  
Vol 85 (1) ◽  
pp. 60-69 ◽  
Author(s):  
P Stanley ◽  
T Sudo ◽  
J P Carver

Two Chinese hamster ovary (CHO) cell mutants selected for resistance to wheat germ agglutinin (WGA) have been shown to exhibit defective sialylation of membrane glycoproteins and a membrane glycolipid, GM3. The mutants (termed WgaRII and WgaRIII) have been previously shown to belong to different genetic complementation groups and to exhibit different WGA-binding abilities. These mutants and a WGA-resistant CHO cell mutant termed WgaRI (which also possesses a surface sialylation defect arising from a deficient N-acetylglucosaminyltransferase activity), have enabled us to investigate the role of sialic acid in WGA binding at the cell surface. Scatchard plots of the binding of 125I-WGA (1 ng/ml to 1 mg/ml) to parental and WgaR CHO cells before and after a brief treatment with neuraminidase provide evidence for several different groups of sialic acid residues at the CHO cell surface which may be distinquished by their differential involvement in WGA binding to CHO cells.


1990 ◽  
Vol 10 (10) ◽  
pp. 5160-5165 ◽  
Author(s):  
S Ahmad ◽  
R Ahuja ◽  
T J Venner ◽  
R S Gupta

A major cellular protein (P2; approximately 70 kilodaltons) which is altered in Chinese hamster ovary (CHO) cell mutants resistant to the microtubule inhibitors colchicine and podophyllotoxin has been shown to correspond to the constitutive form of the 70-kilodalton heat shock protein (hsc70). The inference that P2 and hsc70 are the same protein is based on the following observations: (i) migration of P2 in two-dimensional polyacrylamide gels in the same position as that reported for hsc70; (ii) cross-reactivity of a monoclonal antibody which reacts with both the constitutive and induced forms of hsp70 with the P2 spot from wild-type CHO cells and with both P2 and a mutant form of P2 in a CHO cell mutant; (iii) specific reactivity of a polyclonal antibody to P2 with both the constitutive and heat-induced forms of hsp70 in human cells; (iv) identical immunofluorescent staining of dot/patchlike structures with both P2 and hsp70 antibodies in human and CHO cells; and (v) a cDNA clone for hsc70 has been isolated and sequenced from wild-type CHO cells. The in vitro transcription and translation product of this cDNA has been shown to comigrate with the P2 protein spot in two-dimensional gels, indicating their identity. The fact that there is an alteration in hsc70 in mutants resistant to antimitotic drugs suggests a role for this protein in the in vivo assembly and function of microtubules.


1994 ◽  
Vol 141 (2) ◽  
pp. 369-375 ◽  
Author(s):  
T Minegishi ◽  
S Igarashi ◽  
K Nakamura ◽  
M Nakamura ◽  
M Tano ◽  
...  

Abstract The functional capacity of the recombinant human FSH (hFSH) receptor was tested on the basis of gonadotrophin stimulation of cyclic AMP (cAMP) production by transient transfections of 293 cells and stable transfections of Chinese hamster ovary (CHO) cells. A CHO cell line expressed with the hFSH receptor cDNA covering the entire amino acid coding region revealed the presence of FSH binding site (Kd 6·2 × 10−10 m) on the plasma membrane. Treatment of transfected cells with hFSH induced dose-dependent increases in intracellular cAMP production. These results indicate that the hFSH receptor functionally couples with endogenous adenylyl cyclase. Although rat FSH also induced dose-dependent increases in cAMP production, bovine FSH was effective only at high doses and human chorionic gonadotropin did not alter cAMP levels compared with control values. Northern blot analysis with a cRNA probe derived from hFSH receptor cDNA indicated the presence of two common FSH receptor mRNA transcripts (2·4 and 4·1 kb) in RNA prepared from a human ovary and transfected cell lines. Preincubation of CHO cells expressing a functional hFSH receptor (CHO-FSHR) with FSH for 16 h decreased the subsequent cAMP production resulting from a 30-min pulse of FSH stimulation. These results indicate that desensitization of the adenylyl cyclase response to FSH stimulation occurs in CHO-FSHR cells. This cell line therefore provides a tool with which to pursue detailed studies on the molecular basis of FSH-induced desensitization. Journal of Endocrinology (1994) 141, 369–375


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Menglin Shang ◽  
Taehong Kwon ◽  
Jean-Francois P. Hamel ◽  
Chwee Teck Lim ◽  
Bee Luan Khoo ◽  
...  

AbstractChinese hamster ovary (CHO) cells have been the most commonly used mammalian host for large-scale commercial production of therapeutic proteins, such as monoclonal antibodies. Enhancement of productivity of these CHO cells is one of the top priorities in the biopharmaceutical industry to reduce manufacturing cost. Although there are many different methods (e.g. temperature, pH, feed) to improve protein production in CHO cells, the role of physiologically relevant hydrostatic pressure in CHO cell culture has not been reported yet. In this study, four different hydrostatic pressures (0, 30, 60, and 90 mmHg) were applied to batch CHO cells, and their cell growth/metabolism and IgG1 production were examined. Our results indicate that hydrostatic pressure can increase the maximum cell concentration by up to 50%. Moreover, overall IgG1 concentration on Day 5 showed that 30 mmHg pressure can increase IgG1 production by 26%. The percentage of non-disulphide-linked antibody aggregates had no significant change under pressure. Besides, no significant difference was observed between 30 mmHg and no pressure conditions in terms of cell clumping formation. All these findings are important for the optimization of fed-batch or perfusion culture for directing cell growth and improving antibody production.


Sign in / Sign up

Export Citation Format

Share Document