scholarly journals Deacylated lipopolysaccharide inhibits neutrophil adherence to endothelium induced by lipopolysaccharide in vitro.

1987 ◽  
Vol 165 (5) ◽  
pp. 1393-1402 ◽  
Author(s):  
T H Pohlman ◽  
R S Munford ◽  
J M Harlan

Selective deacylation of the nonhydroxylated fatty acids from S. typhimurium LPS by an acyloxyacyl hydrolase isolated from leukocytes reduces toxic activity of LPS in vivo. We examined the effect of deacylated LPS on neutrophil adherence to human umbilical vein endothelial cells (HUVE). Pretreatment of HUVE with LPS (13 ng/ml for 4 h) produced a marked increase in the adherence of subsequently added neutrophils. In contrast, there was no increase in the adherence of neutrophils to HUVE pretreated with deacylated LPS (up to 260 ng/ml for 4 h). Neutrophil adherence to HUVE pretreated with LPS decreased as the degree of LPS deacylation increased. Deacylated LPS was not only itself inactive, but it inhibited neutrophil-endothelial interactions induced by LPS. Neutrophil adherence to HUVE pretreated with LPS was inhibited by deacylated LPS in a dose-dependent manner. Complete inhibition of adherence was observed at a 20:1 ratio (wt/wt) of deacylated LPS to LPS. Significantly, inhibition of neutrophil adherence to HUVE pretreated with LPS was observed even when deacylated LPS was added to HUVE up to 60 min after LPS. Deacylated LPS, however, did not inhibit neutrophil adherence induced by pretreatment of HUVE with IL-1 or TNF-alpha. We conclude that enzymatic deacylation of the nonhydroxylated fatty acids of LPS abolishes the ability of LPS to induce surface expression of a neutrophil adherence promoting activity in HUVE. Furthermore, deacylated LPS inhibits neutrophil adherence to HUVE induced by LPS, perhaps by preventing the interaction of LPS with a specific cell-surface or intracellular target.

Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5393-5399 ◽  
Author(s):  
Ronen Ben-Ami ◽  
Russell E. Lewis ◽  
Konstantinos Leventakos ◽  
Dimitrios P. Kontoyiannis

AbstractIn susceptible hosts, angioinvasion by Aspergillus fumigatus triggers thrombosis, hypoxia, and proinflammatory cytokine release, all of which are stimuli for angiogenesis. We sought to determine whether A fumigatus directly modulates angiogenesis. A fumigatus culture filtrates profoundly inhibited the differentiation, migration, and capillary tube formation of human umbilical vein endothelial cells in vitro. To measure angiogenesis at the site of infection, we devised an in vivo Matrigel assay in cyclophosphamide-treated BALB/c mice with cutaneous invasive aspergillosis. Angiogenesis was significantly suppressed in Matrigel plugs implanted in A fumigatus–infected mice compared with plugs from uninfected control mice. The antiangiogenic effect of A fumigatus was completely abolished by deletion of the global regulator of secondary metabolism, laeA, and to a lesser extent by deletion of gliP, which controls gliotoxin production. Moreover, pure gliotoxin potently inhibited angiogenesis in vitro in a dose-dependent manner. Finally, overexpression of multiple angiogenesis mediator–encoding genes was observed in the lungs of cortisone-treated mice during early invasive aspergillosis, whereas gene expression returned rapidly to baseline levels in cyclophosphamide/cortisone-treated mice. Taken together, these results indicate that suppression of angiogenesis by A fumigatus both in vitro and in a neutropenic mouse model is mediated through secondary metabolite production.


2021 ◽  
Author(s):  
Renpeng Zhou ◽  
Chuang Yin ◽  
Weiwei Bian ◽  
Chen Wang

Abstract Our present study is aimed to evaluate the effects of adipose-derived extracts (AT-Ex) and GDNF within the extracts on skin graft. AT-Ex was harvest from fresh human lipoaspirates with centrifugation, emulsification and lysing by cycles of freeze and thawing. Concentrations of GDNF, VEGF and bFGF were detected by ELISA. AT-Ex and anti-GDNF-antibody-coupled AT-Ex were further used to test their ability to promote tube formation using human umbilical vein endothelial cells (HUVECs) and stimulate angiogenesis in nude skin-graft models. The results demonstrated that abundant GDNF, VEGF and bFGF were detected in AT-Ex, with GDNF displaying the highest concentration. AT-Ex significantly promoted the tube formation ability of HUVECs in vitro, with a dosage-dependent manner, while this ability was partially impaired when the anti-GDNF antibody was conjugated. In vivo, The AT-Ex treatment increased dermal thickness, augmented dermal proliferation and increased vascular density and GDNF contributed greatly to the AT-Ex effect in improvement the grafted skin condition by promoting angiogenesis in vivo. Our results suggested that critical effect of GDNF from AT-Ex on improvement skin graft condition.


2018 ◽  
Vol 51 (1) ◽  
pp. 1701096 ◽  
Author(s):  
Carole Phan ◽  
Etienne-Marie Jutant ◽  
Ly Tu ◽  
Raphaël Thuillet ◽  
Andrei Seferian ◽  
...  

Pleural effusion is a frequent side-effect of dasatinib, a second-generation tyrosine kinase inhibitor used in the treatment of chronic myelogenous leukaemia. However, the underlying mechanisms remain unknown. We hypothesised that dasatinib alters endothelial integrity, resulting in increased pulmonary vascular endothelial permeability and pleural effusion.To test this, we established the first animal model of dasatinib-related pleural effusion, by treating rats with a daily regimen of high doses of dasatinib (10 mg·kg−1·day−1 for 8 weeks).Pleural ultrasonography revealed that rats chronically treated with dasatinib developed pleural effusion after 5 weeks. Consistent with these in vivo observations, dasatinib led to a rapid and reversible increase in paracellular permeability of human pulmonary endothelial cell monolayers as reflected by increased macromolecule passage, loss of vascular endothelial cadherin and zonula occludens-1 from cell–cell junctions, and the development of actin stress fibres. These results were replicated using human umbilical vein endothelial cells and confirmed by decreased endothelial resistance. Interestingly, we demonstrated that this increased endothelial permeability is a reactive oxygen species (ROS)-dependent mechanism in vitro and in vivo using a cotreatment with an antioxidant agent, N-acetylcysteine.This study shows that dasatinib alters pulmonary endothelial permeability in a ROS-dependent manner in vitro and in vivo leading to pleural effusion.


2002 ◽  
Vol 283 (2) ◽  
pp. H811-H818 ◽  
Author(s):  
Konstantin Mayer ◽  
Martina Merfels ◽  
Marion Muhly-Reinholz ◽  
Stephanie Gokorsch ◽  
Simone Rosseau ◽  
...  

Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (ω-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-α) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that ω-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2018 ◽  
Author(s):  
Luisa Pedro ◽  
Jacqueline D. Shields

AbstractPodoplanin, a highly O-glycosylated type-1 transmembrane glycoprotein, found in lymphatic endothelial cells, podocytes, alveolar epithelial cells and lymph node fibroblasts is also expressed by tumour cells, and is correlated with more aggressive disease. Despite numerous studies documenting podoplanin expression, the mechanisms underlying its tumour-promoting functions remain unclear. Using a murine melanoma cell line that endogenously expresses podoplanin, we demonstrate interactions with proteins necessary for cytoskeleton reorganization, adhesion and matrix degradation, and endocytosis/receptor recycling but also identify a novel interaction with caveolin-1. We generated a panel of podoplanin and caveolin-1 variants to determine the molecular interactions and functional consequences of these interactions. Complementary in vitro and in vivo systems confirmed the existence of a functional cooperation in which surface expression of both full length, signalling competent podoplanin and caveolin-1 are necessary to induce directional migration and invasion, which is executed via PAK1 and ERK1 pathways. Our findings establish that podoplanin signalling mediates the invasive properties of melanoma cells in a caveolin-1 dependent manner.Summary StatementThis manuscript describes a new interaction and functional cooperation between podoplanin and caveolin1 that drives tumour cell invasion into surrounding tissues.


2018 ◽  
Vol 19 (9) ◽  
pp. 2753 ◽  
Author(s):  
Nina Zippel ◽  
Annemarieke Loot ◽  
Heike Stingl ◽  
Voahanginirina Randriamboavonjy ◽  
Ingrid Fleming ◽  
...  

AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα−/−) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


Sign in / Sign up

Export Citation Format

Share Document