scholarly journals Transfected plasmacytoma cells do not transport the membrane form of IgM to the cell surface.

1988 ◽  
Vol 167 (2) ◽  
pp. 652-657 ◽  
Author(s):  
J Hombach ◽  
F Sablitzky ◽  
K Rajewsky ◽  
M Reth

Expression vectors coding for membrane-bound IgM antibodies were introduced into myeloma and B lymphoma cells. Only the lymphoma but not the myeloma cells were able to express the antibodies on the cell surface, although in both cases, complete antibodies were assembled intracellularly. In myeloma cells, the Ig molecules did not reach the Golgi compartment. Thus, the intracellular transport of membrane-bound antibodies is controlled in the B cell lineages in a developmentally ordered fashion.

1990 ◽  
Vol 172 (3) ◽  
pp. 973-976 ◽  
Author(s):  
T Tsubata ◽  
M Reth

We constructed expression vectors coding for the two pre-B-specific genes, VpreB and lambda 5, and transfected them together with a mu vector (mu tm) into Ig- myeloma cells. In a transfectant expressing all three introduced genes, the mu tm chain is transported on the cell surface. A biochemical analysis demonstrated that, in these cells, the mu tm chain is associated noncovalently with an 18-kD protein and covalently with a 22-kD protein, which are most likely the products of VpreB and lambda 5, respectively. Our results, thus, strongly suggest that the products of lambda 5 and VpreB bind to mu chains and have the same capacity as conventional Ig L chains to allow surface expression of mu chains.


1980 ◽  
Vol 55 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Reuven Laskov ◽  
K.Jin Kim ◽  
Colette Kanellopoulos-Langevin ◽  
Richard Asofsky

1989 ◽  
Vol 92 (4) ◽  
pp. 633-642
Author(s):  
J.K. Burkhardt ◽  
Y. Argon

The appearance of newly synthesized glycoprotein (G) of vesicular stomatitis virus at the surface of infected BHK cells is inhibited reversibly by treatment with carbonylcyanide m-chlorophenylhydrazone (CCCP). Under the conditions used, CCCP treatment depleted the cellular ATP levels by 40–60%, consistent with inhibition of transport at energy-requiring stages. The G protein that accumulates in cells treated with CCCP is heterogeneous. Most of it is larger than the newly synthesized G protein, is acylated with palmitic acid, and is resistant to endoglycosidase H (Endo H). Most of the arrested G protein is also sensitive to digestion with neuraminidase, indicating that it has undergone at least partial sialylation. A minority of G protein accumulates under these conditions in a less-mature form, suggesting its inability to reach the mid-Golgi compartment. The oligosaccharides of this G protein are Endo-H-sensitive and seem to be partly trimmed. Whereas sialylated G protein was arrested intracellularly, fucose-labelled G protein was able to complete its transport to the cell surface, indicating that a late CCCP-sensitive step separates sialylation from fucosylation. These post-translational modifications indicate that G protein can be transported as far as the trans-Golgi in the presence of CCCP and is not merely arrested in the endoplasmic reticulum.


1994 ◽  
Vol 302 (2) ◽  
pp. 451-454 ◽  
Author(s):  
M H Lafrance ◽  
C Vézina ◽  
Q Wang ◽  
G Boileau ◽  
P Crine ◽  
...  

Neutral endopeptidase (NEP, EC 3.4.24.11) is a major ectoenzyme of the brush-border membrane. The ectodomain of NEP contains five putative N-glycosylation sites. In order to determine the role of the addition of sugar moieties on the activity and intracellular transport of NEP, we have used site-directed mutagenesis to remove all or some of the five potential sites of sugar addition in membrane-bound and secreted forms of the enzyme. Expression of NEP glycosylation mutants in COS-1 cells showed that all five sites are used for sugar addition. Immunoblotting of NEP in COS-1 cell extracts or culture media indicated that total expression of normal membrane-bound NEP was not affected by mutations at glycosylation sites, whereas this expression level appeared to be strictly dependent on the number of glycosylation sites retained on the soluble form. The transport to the cell surface was also reduced by decreased glycosylation, but again the phenomenon appeared more drastic in the case of the soluble form than for the membrane-bound enzyme. Enzyme activity was decreased by deglycosylation. However, the presence of either of two crucial sites (sites 1 and 5; numbered from the N-terminus of the protein) was sufficient to recover close-to-normal enzymic activities. Transport to the cell surface and enzyme activity of NEP are thus both dependent on sugar residues, probably through different conformational constraints. These constraints seem to be local for enzyme activity but more global for transport to the cell surface.


1990 ◽  
Vol 33 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Clara S. P. Chan ◽  
Susan B. Wormsley ◽  
Lawrence E. Pierce ◽  
James B. Peter ◽  
Geraldine P. Schechter
Keyword(s):  
B Cell ◽  

2001 ◽  
Vol 13 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Tomoyoshi Terada ◽  
Hideo Kaneko ◽  
Toshiyuki Fukao ◽  
Hideaki Tashita ◽  
Ai Lian Li ◽  
...  

1986 ◽  
Vol 103 (1) ◽  
pp. 255-263 ◽  
Author(s):  
J D Bangs ◽  
N W Andrews ◽  
G W Hart ◽  
P T Englund

After synthesis on membrane-bound ribosomes, the variant surface glycoprotein (VSG) of Trypanosoma brucei is modified by: (a) removal of an N-terminal signal sequence, (b) addition of N-linked oligosaccharides, and (c) replacement of a C-terminal hydrophobic peptide with a complex glycolipid that serves as a membrane anchor. Based on pulse-chase experiments with the variant ILTat-1.3, we now report the kinetics of three subsequent processing reactions. These are: (a) conversion of newly synthesized 56/58-kD polypeptides to mature 59-kD VSG, (b) transport to the cell surface, and (c) transport to a site where VSG is susceptible to endogenous membrane-bound phospholipase C. We found that the t 1/2 of all three of these processes is approximately 15 min. The comparable kinetics of these processes is compatible with the hypotheses that transport of VSG from the site of maturation to the cell surface is rapid and that VSG may not reach a phospholipase C-containing membrane until it arrives on the cell surface. Neither tunicamycin nor monensin blocks transport of VSG, but monensin completely inhibits conversion of 58-kD VSG to the mature 59-kD form. In the presence of tunicamycin, VSG is synthesized as a 54-kD polypeptide that is subsequently processed to a form with a slightly higher Mr. This tunicamycin-resistant processing suggests that modifications unrelated to N-linked oligosaccharides occur. Surprisingly, the rate of VSG transport is reduced, but not abolished, by dropping the chase temperature to as low as 10 degrees C.


1998 ◽  
Vol 187 (10) ◽  
pp. 1671-1679 ◽  
Author(s):  
Min Wu ◽  
Robert E. Bellas ◽  
Jian Shen ◽  
Gail E. Sonenshein

Treatment of WEHI 231 immature B lymphoma cells with an antibody against their surface immunoglobulin M (anti-IgM) induces apoptosis and has been studied extensively as a model of self-induced B cell tolerance. Since the tumor suppressor protein p53 has been implicated in apoptosis in a large number of cell types and has been found to be mutated in a variety of B cell tumors, here we sought to determine whether p53 and the p53 target gene cyclin-dependent kinase inhibitor p21WAF1/CIP1 were involved in anti-IgM–induced cell death. Anti-IgM treatment of WEHI 231 cells increased expression of p53 and p21 protein levels. Ectopic expression of wild-type p53 in WEHI 231 cells induced both p21 expression and apoptosis. Ectopic expression of p21 similarly induced apoptosis. Rescue of WEHI 231 cells from apoptosis by costimulation with CD40 ligand ablated the increase in p21 expression. Lastly, a significant decrease in anti-IgM–mediated apoptosis was seen upon downregulation of endogenous p53 activity by expression of a dominant-negative p53 protein or upon microinjection of an antisense p21 expression vector or antibody. Taken together, the above data demonstrate important roles for p53 and p21 proteins in receptor-mediated apoptosis of WEHI 231 B cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2537-2537
Author(s):  
Chengcheng Fu ◽  
Hui Liu ◽  
Juan Wang ◽  
Ling Ma ◽  
Songguang Ju ◽  
...  

Abstract CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively, regulate cell activation and proliferation of immune system. CD137L, in addition to its ability to costimulate T cells by triggering CD137 receptor, also signals back into antigen presenting cells inducing proliferation, prolonging survival and enhancing secretion of proinflammatory cytokines. The expression of CD137L and its function on multiple myeloma cells is unknown. We identified the constitutive expression of CD137L by flow cytometry on U266, RPMI 8226, LP1, MY5 and KMS-11 of Multiple myeloma (MM) cell lines as high as 96%, 97.5%, 89%, 93% and 94%.But, CD137 expressed on the cell surface was low as 4%, 5%, 1%, 2%, 5% respectively. Now that, CD137L was expressed very strongly on MM cell lines, next, we investigated CD137L expression of MM cells from 85 BM samples of patients seen in the hematological Dept of the First Affiliated Hosp. of Soochow University between January 2012 and June 2013 and diagnosed of active multiple MM, including the patients of newly-diagnosed (n=35), relapsed (n=5) and after 2- 4 prior therapies (n=45). The BM samples were examined using antibodies against CD45RO PE-Cy7, CD138 APC-H7, CD38 FITC and CD137L PE, according to standard protocols for surface staining. Indeed, CD137L protein was expressed by a select group of CD45-CD38++CD138+cells as higher than 95%, the same, CD38 and CD138 are expressed more than 90% of the cells of CD45-CD137L+.There were 22 samples from 11 cases collected before and after treatment and this was further evidence that CD137L molecule was consistently expressed on the MM cell surface. However, CD137L expression was not or hardly detectable on normal plasma cells confirmed by CD45+CD38++CD138+ CD56- CD19+, indicating that CD137L was ectopically expressed by MM cells and probably a specific marker of MM cells. The ectopic CD137L expression was not a mere epiphenomenon but was selected for, what function of it? We hypothesized that it would also act as a growth stimulus for B cell cancers. Then we selected U266-a MM cell line to explore the biological effect of CD137L reverse signaling and its underlying mechanism. As a result, in vitro study, U266 cells(2X105/ml))were cultured plate pre-coated with mAb 1F1 or irrelevant mouse IgG at l ug/ml in PBS and at 400 ul per well of 24-well plate or 80 ul per well of 96-well plate and washed twice after overnight incubation at 4°C. The proliferation and survival of U266 was enhanced by stimulating- CD137L mAb (1F1) than those induced by control mouse IgG by cell counting (4.2 X105/ml VS 3.3 X105/ml), WST-8(1.15 VS 0.81) and CFSE assay (930 VS 991) at incubation for 48h. In addition, the cell cycle analysis showed that CD137L induces proliferation and increases the number of cells in the S phase from 36.1% to 42.5% after 72h incubation. The percentage of apoptosis cells (Annexin V+ and PI+) was 19.6% VS 21.2% with no statistical significance. In order to explore the mechanism of the function of CD137L on MM cells, we surveyed the cytokine profiles during the incubation of U266 cells cultured for 2 days with different stimuli with mAb 1F1 compared with the control group. Intracellular cytokine staining showed that treatment of cells with 1F1 increased the production of IL-6 from 3.8% to 63.9% by Flow cytometry. When neutralizing anti-IL-6 mAb (5 ug/ml) was added to the culture medium, the cells(2X105/ml))were cultured for 48 h in pure medium or plus 10 ng/ml Fc or CD137–Fc protein and the cell proliferation measured by WST-8 was 0.79 VS 0.80 VS 0.72.1F1-induced cell proliferation was effectively inhibited. IL-6 can promote cell proliferation and survival of MM. An increase of these cytokines might explain why CD137L expression could stimulate the proliferation of U266. Finally, the U266 cells were treated with bortezomib and the growth of cells was analyzed by WST-8 assay. It demonstrated that bortezomib could inhibit the function of 1F1 and the inhibition ratio of bortezomib was 22%, 51% and 58% at 24h, 48h and 72h. MM is a B-cell malignancy characterized by the clonal expansion and accumulation of malignant plasma cells in the bone marrow. In our study, CD137L is not only a novel ectopic constitutive marker of MM, but also a promoting proliferation factor. This suggests the possibility that its expression on MM cells may be directly target for immunomodulatory therapy for MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 224-233
Author(s):  
Suhair Shallal ◽  
Jacki Kornbluth

Myeloma tumor cells, both freshly excised and cultured, are extremely resistant to cell-mediated cytolysis. As evidence suggests that B-cell susceptibility to lysis is dependent upon its state of differentiation and activation, we tested the ability of a variety of B-cell proliferation and differentiation agents, including pokeweed mitogen (PWM), to enhance the sensitivity of myeloma cells to cell-mediated lysis. PWM was found to significantly enhance the susceptibility of myeloma cell lines and freshly isolated myeloma cells to interleukin-2 (IL-2)–activated cell-mediated cytolysis. This effect was seen with the use of both IL-2–stimulated natural killer (NK) cells and T cells as effectors. The enhanced sensitivity of myeloma cells to cytolysis correlated with an increase in their cell surface expression of CD9, a pre-B cell marker and member of the transmembrane 4 superfamily. Incubation of PWM-stimulated myeloma cells with either monoclonal antibodies or antisense oligonucleotides directed against CD9 abrogated the effect of PWM. In order to determine whether there was a direct relationship between the expression of CD9 and enhanced sensitivity to cytolysis, myeloma cell lines that lacked CD9 expression were transfected with the CD9 gene. The level of cell surface CD9 expression correlates with enhanced susceptibility to lysis. Therefore, CD9 appears to be an important component in enhancing the sensitivity of myeloma cells to lysis mediated by IL-2–activated T cells and NK cells.


Sign in / Sign up

Export Citation Format

Share Document