scholarly journals Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization.

1992 ◽  
Vol 176 (3) ◽  
pp. 799-809 ◽  
Author(s):  
A Sădziene ◽  
P A Rosa ◽  
P A Thompson ◽  
D M Hogan ◽  
A G Barbour

We used polyclonal antisera and monoclonal antibodies (mAbs) to inhibit the growth of clonal populations of two strains of Borrelia burgdorferi, the Lyme disease agent, and thereby select for antibody-resistant mutants. mAbs were directed at the outer membrane proteins, OspA or OspB. Mutants resistant to the growth-inhibiting properties of the antibodies were present in the populations at frequencies ranging from 10(-5) to 10(-2). The several escape variants that were examined were of four classes. Class I mutants were resistant to all mAbs; they lacked OspA and OspB and the linear plasmid that encodes them. Two other proteins were expressed in larger amounts in class I mutants; mAbs to these proteins inhibited the mutant but not the wild-type cells. Class II mutants were resistant to some but not all mAbs; they had truncated OspA and/or OspB proteins. Class III mutants were resistant only to the selecting mAb; they had full-length Osp proteins that were not bound by the selecting antibody in Western blots. In two class III mutants resistant to different anti-OspA mAbs, missense mutations were demonstrated in the ospA genes. Class IV mutants were likewise resistant only to selecting antibody, but in this case the selecting antibody still bound in Western blots.

2005 ◽  
Vol 49 (10) ◽  
pp. 4354-4357 ◽  
Author(s):  
Kendal M. Galbraith ◽  
Amanda C. Ng ◽  
Betsy J. Eggers ◽  
Craig R. Kuchel ◽  
Christian H. Eggers ◽  
...  

ABSTRACT We have isolated in vitro fluoroquinolone-resistant mutants of the Lyme disease agent, Borrelia burgdorferi. Mutations in parC, which encodes a subunit of topoisomerase IV, were associated with loss of susceptibility to sparfloxacin, moxifloxacin, and Bay-Y3118, but not ciprofloxacin. This is the first description of fluoroquinolone resistance in the spirochete phylum.


2006 ◽  
Vol 50 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Daniel Criswell ◽  
Virginia L. Tobiason ◽  
J. Stephen Lodmell ◽  
D. Scott Samuels

ABSTRACT We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 × 10−6. These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 × 10−9 to 1 ×10−7 in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.


2000 ◽  
Vol 38 (7) ◽  
pp. 2611-2621 ◽  
Author(s):  
Joppe W. R. Hovius ◽  
K. Emil Hovius ◽  
Anneke Oei ◽  
Dirk J. Houwers ◽  
Alje P. van Dam

In an area where Lyme disease is endemic in The Netherlands all dogs had positive titers by whole-cell enzyme-linked immunosorbent assay and appeared to be naturally infected by Borrelia burgdorferi sensu lato. To compare the antibody responses of symptomatic dogs and asymptomatic controls, we performed Western blots and in vitro immobilization assays to study antibody-dependent bactericidal activity. Strains from three different genospecies were employed as the antigen source: B. burgdorferi strain B31,Borrelia garinii strain A87S, and Borrelia afzelii strain pKo. Antibodies against flagellin (p41) and p39 for three strains were found in sera from both symptomatic and asymptomatic dogs and were therefore considered to be markers of exposure. Antibodies against p56 and p30 of strain B31, against p75, p58, p50, OspC, and p<19 of strain A87S, and against p56, p54, p45, OspB, p31, p26, and p<19 of strain pKo were found significantly more frequently in sera from symptomatic dogs younger than 8 years when the first symptoms were observed than in those from age-matched controls (P < 0.01). These antibodies were not found in preclinical sera and appeared during development of disease. Antibodies against OspA of strains B31 and A87S were only seen in acute-phase and convalescent sera from three dogs that recovered from disease. Incubation with 25% normal canine serum did not result in the immobilization of strains B31 and pKo, but partial immobilization of strain A87S (61% ± 24% [standard deviation] at 5 h) occurred. Seven of 15 sera from symptomatic dogs but none of the sera from 11 asymptomatic dogs had antibody-dependent immobilizing activity against one of the strains. Consecutive sera from one of these dogs immobilized two different strains. Antibody-mediated bactericidal serum was not seen before onset of disease, was strongest in the acute phase of disease, and fluctuated during chronic disease. From seven out of eight symptomatic dogs Borrelia DNA was amplified by PCR; in three of them the bactericidal activity was directed against one of the genospecies amplified from that dog; however, four PCR-positive dogs lacked bactericidal activity. In conclusion, dogs with symptomatic canine borreliosis have more-extensive antibody reactivity against Borrelia, as shown by both Western blotting and immobilization assays.


2005 ◽  
Vol 73 (11) ◽  
pp. 7657-7668 ◽  
Author(s):  
Kelly J. Wright ◽  
Patrick C. Seed ◽  
Scott J. Hultgren

ABSTRACT In the murine model of urinary tract infections (UTI), cystitis by uropathogenic Escherichia coli (UPEC) occurs through an intimate relationship with the bladder superficial umbrella cell entailing cycles of adherence, invasion, intracellular bacterial community (IBC) formation, and dispersal (fluxing) from the intracellular environment. IBC dispersal is a key step that results in the spread of bacteria over the epithelial surface to initiate additional rounds of IBC formation. We investigated the role of flagella in mediating adherence and motility during UTI, hypothesizing that the dispersion of the IBC would be incomplete in the absence of motility, thus interrupting the IBC pathway and attenuating the infection. Using gfp reporter fusions, the expression of the flagellar class I flhDC and class III fliC genes was monitored to track key points of regulation throughout the pathogenic cascade. In vitro, growth under conditions promoting motility resulted in the robust expression of both fusions. In contrast, only the class I fusion produced significant expression throughout early stages of IBC development including the dispersion stage. Thus, unlike in vitro modeling of motility, the regulatory cascade appeared incomplete in vivo. Throughout IBC formation, nonmotile ΔfliC mutants achieved the same number of IBCs as the wild-type (wt) strain, demonstrating that flagella are neither essential nor required for first- or second-generation IBC formation. However, in competition experiments between wt and ΔfliC strains, the wt was shown to have a fitness advantage in persisting throughout the urinary tract for 2 weeks, demonstrating a subtle but measurable role for flagella in virulence.


2003 ◽  
Vol 185 (17) ◽  
pp. 5148-5157 ◽  
Author(s):  
Christine M. Beatty ◽  
Douglas F. Browning ◽  
Stephen J. W. Busby ◽  
Alan J. Wolfe

ABSTRACT The cyclic AMP receptor protein (CRP) activates transcription of the Escherichia coli acs gene, which encodes an acetate-scavenging enzyme required for fitness during periods of carbon starvation. Two promoters direct transcription of acs, the distal acsP1 and the proximal acsP2. In this study, we demonstrated that acsP2 can function as the major promoter and showed by in vitro studies that CRP facilitates transcription by “focusing” RNA polymerase to acsP2. We proposed that CRP activates transcription from acsP2 by a synergistic class III mechanism. Consistent with this proposal, we showed that CRP binds two sites, CRP I and CRP II. Induction of acs expression absolutely required CRP I, while optimal expression required both CRP I and CRP II. The locations of these DNA sites for CRP (centered at positions −69.5 and −122.5, respectively) suggest that CRP interacts with RNA polymerase through class I interactions. In support of this hypothesis, we demonstrated that acs transcription requires the surfaces of CRP and the C-terminal domain of the α subunit of RNA polymerase holoenzyme (α-CTD), which is known to participate in class I interactions: activating region 1 of CRP and the 287, 265, and 261 determinants of the α-CTD. Other surface-exposed residues in the α-CTD contributed to acs transcription, suggesting that the α-CTD may interact with at least one protein other than CRP.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1381 ◽  
Author(s):  
Jillian Wilhelmina Paulina Bracht ◽  
Niki Karachaliou ◽  
Trever Bivona ◽  
Richard B. Lanman ◽  
Iris Faull ◽  
...  

BRAF V600 mutations have been found in 1–2% of non-small-cell lung cancer (NSCLC) patients, with Food and Drug Administration (FDA) approved treatment of dabrafenib plus trametinib and progression free survival (PFS) of 10.9 months. However, 50–80% of BRAF mutations in lung cancer are non-V600, and can be class II, with intermediate to high kinase activity and RAS independence, or class III, with impaired kinase activity, upstream signaling dependence, and consequently, sensitivity to receptor tyrosine kinase (RTK) inhibitors. Plasma cell-free DNA (cfDNA) of 185 newly diagnosed advanced lung adenocarcinoma patients (Spanish Lung Liquid versus Invasive Biopsy Program, SLLIP, NCT03248089) was examined for BRAF and other alterations with a targeted cfDNA next-generation sequencing (NGS) assay (Guardant360®, Guardant Health Inc., CA, USA), and results were correlated with patient outcome. Cell viability with single or combined RAF, MEK, and SHP2 inhibitors was assessed in cell lines with BRAF class I, II, and III mutations. Out of 185 patients, 22 had BRAF alterations (12%) of which seven patients harbored amplifications (32%) and 17 had BRAF mutations (77%). Of the BRAF mutations, four out of 22 (18%) were V600E and 18/22 (82%) were non-V600. In vitro results confirmed sensitivity of class III and resistance of class I and II BRAF mutations, and BRAF wild type cells to SHP2 inhibition. Concomitant MEK or RAF and SHP2 inhibition showed synergistic effects, especially in the class III BRAF-mutant cell line. Our study indicates that the class of the BRAF mutation may have clinical implications and therefore should be defined in the clinical practice and used to guide therapeutic decisions.


2000 ◽  
Vol 182 (3) ◽  
pp. 782-788 ◽  
Author(s):  
Victor Sourjik ◽  
Paul Muschler ◽  
Birgit Scharf ◽  
Rüdiger Schmitt

ABSTRACT The known 41 flagellar, chemotaxis, and motility genes ofSinorhizobium (Rhizobium) meliloti contained in the “flagellar regulon” are organized as seven operons and six transcription units that map to a contiguous 45-kb chromosomal region. By probing gene expression on Western blots and with lacZfusions, we have identified two master regulatory genes,visN and visR, contained in one operon. The gene products probably form a heterodimer, VisNR, acting as a global transcription activator of other flagellar genes. The related 27-kDa VisN and VisR proteins are LuxR-type proteins with typical ligand- and DNA-binding domains. The vis operon itself is constitutively transcribed; however, to activate flagellar genes, VisNR seemingly requires the binding of a yet-unknown effector. Gene expression in tester strains with known deficiencies revealed a hierarchy of three classes of flagellar genes: class I comprisesvisN and visR; class II, controlled by VisNR, comprises flagellar assembly (class IIA) and motor (class IIB) genes; and class III comprises flagellin and chemotaxis genes that require functional class I and class IIA genes for expression. In contrast to their enterobacterial counterparts, mot genes belong to class II without exerting control over class III genes. While the general hierarchy of gene expression resembles the enterobacterial scheme, the assignment of mot genes to class IIB and the global control by a LuxR-type VisNR activator are new features distinguishing the S. meliloti flagellar gene system.


1989 ◽  
Vol 9 (6) ◽  
pp. 2414-2423 ◽  
Author(s):  
K B Leslie ◽  
J W Schrader

Cell lines were isolated from an in vivo-passaged myelomonocytic leukemia, WEHI-274, that arose in a mouse infected with the Abelson leukemia virus-Moloney leukemia virus complex. Clones were isolated in vitro in the presence or absence of a source of a hemopoietic growth factor, interleukin-3 (IL-3), and were divisible into three distinct classes. All three classes were leukemogenic in vivo. In vitro, the class I clone grew slowly at low cell density but responded with an increased growth rate to IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and autoconditioned medium. Supernatants of these cultures contained a factor with the biological, biochemical, and antigenic properties of IL-3. Class II clones grew better in vitro at low cell densities than did the class I clone and also responded with an increased growth rate to IL-3, GM-CSF, and autoconditional medium but produced GM-CSF rather than IL-3. In contrast, class III clones died in vitro at all cell densities unless exogenous IL-3 or GM-CSF was added. Moreover, they produced no autostimulatory factors. In the class I and class II clones, one allele of the respective IL-3 or GM-CSF gene is rearranged, and in each case, grossly abnormal RNA transcripts of the rearranged gene are present. Neither rearrangements nor abnormal RNA transcripts of the IL-3 or GM-CSF gene were detected in the class III clones. All three classes exhibited a common rearrangement of the c-myb gene, which suggested that all were derived from the one ancestral cell. These experiments demonstrate that two distinct and independent autostimulatory events were involved in the progression of a single disease.


Sign in / Sign up

Export Citation Format

Share Document