scholarly journals The Biological Activity of Natural and Mutant Ptα Alleles

2001 ◽  
Vol 194 (5) ◽  
pp. 695-704 ◽  
Author(s):  
Deena Gibbons ◽  
Nataki C. Douglas ◽  
Domingo F. Barber ◽  
Qiang Liu ◽  
Renee Sullo ◽  
...  

β selection is a major checkpoint in early thymocyte differentiation, mediated by successful expression of the pre-T cell receptor (TCR) comprising the TCRβ chain, CD3 proteins, and a surrogate TCRα chain, pTα. The mechanism of action of the pre-TCR is unresolved. In humans and mice, the pTα gene encodes two RNAs, pTαa, and a substantially truncated form, pTαb. This study shows that both are biologically active in their capacity to rescue multiple thymocyte defects in pTα−/− mice. Further active alleles of pTα include one that lacks both the major ectodomain and much of the long cytoplasmic tail (which is unique among antigen receptor chains), and another in which the cytoplasmic tail is substituted with the short tail of TCR Cα. Thus, very little of the pTα chain is required for function. These data support a hypothesis that the primary role of pTα is to stabilize the pre-TCR, and that much of the conserved structure of pTα probably plays a critical regulatory role.

2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


1996 ◽  
Vol 184 (5) ◽  
pp. 1833-1843 ◽  
Author(s):  
H Jacobs ◽  
J Iacomini ◽  
M van de Ven ◽  
S Tonegawa ◽  
A Berns

The T cell receptor beta (TCR beta) chain controls the developmental transition from CD4-CD8- to CD4+8+thymocytes. We show that the extracellular constant region and the transmembrane region, but not the variable domain or cytoplasmic tail of the TCR beta chain are required for this differentiation step. TCR beta mutant chains lacking the cytoplasmic tail can be found at the cell surface both in functional TCR/CD3 complexes and in a GPI-anchored monomeric form indicating that the cytoplasmic tail of the TCR beta chain functions as an ER retention signal. The concordance between cell surface expression of the mutant chains as TCR/CD3 complexes and their capacity to mediate thymocyte differentiation supports the CD3 mediated feedback model in which preTCR/CD3 complexes control the developmental transition from CD4-CD8- to CD4+CD8+thymocytes.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kannan Natarajan ◽  
Jiansheng Jiang ◽  
Nathan A. May ◽  
Michael G. Mage ◽  
Lisa F. Boyd ◽  
...  

1999 ◽  
Vol 190 (9) ◽  
pp. 1257-1262 ◽  
Author(s):  
Chiyu Wang ◽  
Molly A. Bogue ◽  
Jonathan M. Levitt ◽  
David B. Roth

In SCID (severe combined immunodeficient) mice, proper assembly of immunoglobulin and T cell receptor (TCR) genes is blocked by defective V(D)J recombination so that B and T lymphocyte differentiation is arrested at an early precursor stage. Treating the mice with gamma irradiation rescues V(D)J rearrangement at multiple TCR loci, promotes limited thymocyte differentiation, and induces thymic lymphomas. These effects are not observed in the B cell lineage. Current models postulate that irradiation affects intrathymic T cell precursors. Surprisingly, we found that transfer of irradiated SCID bone marrow cells to unirradiated host animals rescues both TCR rearrangements and thymocyte differentiation. These data indicate that irradiation affects precursor cells at an earlier stage of differentiation than was previously thought and suggest new models for the mechanism of irradiation rescue.


2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


Sign in / Sign up

Export Citation Format

Share Document