scholarly journals Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells

2002 ◽  
Vol 195 (4) ◽  
pp. 473-483 ◽  
Author(s):  
Robbie B. Mailliard ◽  
Shinichi Egawa ◽  
Quan Cai ◽  
Anna Kalinska ◽  
Svetlana N. Bykovskaya ◽  
...  

Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of “T helper (Th)” signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood– or peripheral blood–isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-γ at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I–presented epitopes by antigen-specific CD8+ T cells results in the TNF-α– and IFN-γ–dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I–restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I–presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kunlong Xiong ◽  
Jinxia Niu ◽  
Ruijuan Zheng ◽  
Zhonghua Liu ◽  
Yanzheng Song ◽  
...  

β-Catenin is a key molecule of canonical Wnt/β-catenin pathway. Its roles and expression profiles in T cells of tuberculosis (TB) remain unclear. The aim of this study was to explore the role of β-catenin in CD4+ T cells and its expression characteristics in patients with pulmonary tuberculosis (PTB). In this study, CD4+ T cell-specific β-catenin conditional knockout mice (β-CAT-cKO mice) were aerosol infected with Mycobacteria tuberculosis (Mtb) H37RV with wild-type mice as controls. Four weeks after infection, the mRNA expression of IFN-γ, TNF-α, and TCF-7 in the lungs of mice was measured. CD4, CD8, β-catenin, IFN-γ, and TNF-α in mononuclear cells from the lungs and spleens were measured by flow cytometry, and the pathological changes of lungs were also observed. Patients with PTB were enrolled, with blood samples collected and PBMCs isolated. The expressions of β-catenin, IFN-γ, TNF-α, and PD-1 in CD4+ and CD8+ T cells were measured by flow cytometry. Results showed a decreased frequency of and reduced IFN-γ/TNF-α mRNA expression and secretion by CD4+ T cells in the lungs of infected β-CAT-cKO mice compared with infected wild-type controls, and only slightly more inflammatory changes were observed in the lungs. β-catenin expressions in CD4+ and CD8+ T cells were significantly decreased in blood cells of patients with severe PTB compared with those in mild PTB. The stimulation of peripheral blood mononuclear cells (PBMCs) with lithium chloride (LiCl), a stimulant of β-catenin, resulted in the increase in CD4+ T cell frequency, as well as their secretion of IFN-γ and TNF-α. β-Catenin demonstrated a moderately positive correlation with PD-1 in CD4+ T cells. β-Catenin along with PD-1 and IFN-γ in CD4+ T cells had a high correlation with those in CD8+ T cells. In conclusion, β-catenin may be involved in the regulation of Th1 response and CD4+ T cell frequency in TB.


2020 ◽  
Author(s):  
Hasi Chaolu ◽  
Xinri Zhang ◽  
Xin Li ◽  
Xin Li ◽  
Dongyan Li

To investigate the immune status of people who previously had COVID-19 infections, we recruited patients 2 weeks post-recovery and analyzed circulating cytokines and lymphocyte subsets. We measured levels of total lymphocytes, CD4+ T cells, CD8+ T cells, CD19+ B cells, CD56+ NK cells, and the serum concentrations of interleukin (IL)-1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most post-recovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8 + T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells(51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%) and IL-17 (97.06%). Compared to healthy controls, 2-week post-recovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17. Among post-recovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, post-recovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system has gradually recovered following COVID-19 infection; however, the sustained hyper-inflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3153-3153
Author(s):  
Yukihiro Miyazaki ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Sachiko Okamoto ◽  
Hiroaki Asai ◽  
...  

Abstract Abstract 3153 Purpose: In antitumor adoptive immunotherapy, the utility of tumoricidal CD8+ T cells are mainly highlighted, while in tumor immunity, the importance of tumor-reactive CD4+ T cells is also well documented. However, because the number of well-characterized tumor-associated epitopes recognized by CD4+ T cells still remains small, application of tumor-reactive CD4+ T cells is limited. In order to circumvent this drawback, redirection of CD4+ T cells to well-characterized HLA class I-restricted CD8+ T-cell epitope seems promising. In this study, using an HLA class I-restricted and WT1-specific T-cell receptor (TCR) gene transfer, we, in detail, examined helper functions mediated by those gene-modified CD4+T cells in redirected T cell-based antileukemia adoptive immunotherapy. Methods: HLA-A*2402-restricted and WT1235–243-specific TCR α/β genes were inserted into our unique retroviral vector encoding shRNAs for endogenous TCRs (WT1-siTCR vector), and was employed for gene-modification both of CD4+ and CD8+ T cells to express WT1-specific TCR. (1) WT1 epitope-responsive cytokine production mediated by WT1-siTCR-transduced CD4+ T cells (WT1-siTCR/CD4) was measured using bead-based immunoassay and ELISA assay. (2) WT1 epitope-ligation induced co-stimulatory molecules by WT1-siTCR/CD4 was assessed using flow cytometry. (3) Impacts on WT1 epitope and leukemia-specific responses; cytocidal activity, proliferation and differentiation into memory T-cell phenotype, mediated by WT1-siTCR-transduced CD8+ T cells (WT1-siTCR/CD8) provided by concurrent WT1-siTCR/CD4 were assessed using 51Cr-release assay, CD107a/intracellular IFN-γ assay, CFSE dilution assay and flow cytometry. (4) WT1 epitope-ligation triggered chemokine production mediated by WT1-siTCR/CD4 was assessed using real-time PCR, then chemotaxis mediated by WT1-siTCR/CD8 in response to those chemokines was assessed using a transwell experiment. (5) In vivo tumor trafficking mediated by WT1-siTCR/CD4 was assessed using bioluminescence imaging assay. (6) Finally, WT1-siTCR/CD4-caused in vivo augmentation of antileukemia functionality mediated by WT1-siTCR/CD8 was assessed similarly using a xenografted mouse model. Results: WT1-siTCR/CD4 showed a terminal effector phenotype; positive for transcription factor T-bet, but negative for Bcl-6 or Foxp3. Upon recognition of WT1 epitope, WT1-siTCR/CD4 produced Th1, but not Th2 cytokines in the context of HLA-A*2402, which simultaneously required HLA class II molecules on target cells. WT1 epitope-ligation enhanced WT1-siTCR/CD4 to express cell-surface OX40. In the presence of WT1-siTCR/CD4, but not non-gene-modified CD4, effector functions mediated by WT1-siTCR/CD8 in response to WT1 epitope and leukemia cells, including cytocidal activity based on CD107a expression and IFN-γ production was enhanced. Such augmentation was mediated by humoral factors produced by WT1 epitope-ligated WT1-siTCR/CD4. Additionally, proliferation and differentiation into memory phenotype, notably CD45RA- CD62L+ central memory phenotype, mediated by WT1-siTCR/CD8 in response to both WT1 epitope and leukemia cells were also augmented, accompanied with increased expression of intracellular Bcl-2 and cell-surface IL-7R. Next, CCL3/4 produced by activated WT1-siTCR/CD4 triggered chemotaxis of WT1-siTCR/CD8 which express the corresponding receptor, CCR5. Using bioluminescence imaging, intravenously infused WT1-siTCR/CD4 successfully migrated towards leukemia cells inoculated in a NOG mouse. Finally, co-infused WT1-siTCR/CD4 successfully augmented immediate accumulation towards leukemia cells and antileukemia reactivity mediated by WT1-siTCR/CD8 in a xenografted mouse model. Conclusion: Using GMP grade WT1-siTCR vector, redirected CD4+ T cells to HLA class I-restricted WT1 epitope successfully recognized leukemia cells and augmented in vivo antileukemia functionality mediated by similarly redirected CD8+ T cells, encompassing tumor trafficking, cytocidal activity, proliferation and differentiation into memory cells. The latter seem to support the longevity of transferred antileukemia efficacy. Taking together, coinfusion of redirected CD4+ T cells to HLA class I-restricted WT1 epitope seems feasible and advantageous for the successful WT1-targeting redirected T cell-based immunotherapy against human leukemia. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hasichaolu ◽  
Xinri Zhang ◽  
Xin Li ◽  
Xin Li ◽  
Dongyan Li

To investigate the immune status of people who previously had COVID-19 infections, we recruited two-week postrecovery patients and analyzed circulating cytokine and lymphocyte subsets. We measured levels of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells and the serum concentrations of interleukin- (IL-) 1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most postrecovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8+ T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells (51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%), and IL-17 (97.06%). Compared to healthy controls, two-week postrecovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and IL-17. Among postrecovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells were positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, postrecovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system gradually recovers following COVID-19 infection; however, the sustained hyperinflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1664-1664
Author(s):  
Jian-Ming Li ◽  
Christopher Thomas Petersen ◽  
Katarzyna Anna Darlak ◽  
Hyun Don Yun ◽  
Bruce R Blazar ◽  
...  

Background and Objective We have previously published that antagonizing vasoactive intestinal peptide (VIP) receptors dramatically decreases PD-1 expression on activated CD8+ T-cells and increases antiviral immunity (Blood 2013, 121:2347-51; PLoS One 2013, 8: e63381). Herein we tested whether short-term pharmacological antagonism of VIP signaling could induce anti-tumor immune responses in mice. Methods B6 mice were inoculated with 0.5 - 2 x 106 luciferase+ murine acute myeloid leukemia cells (Luc+ C1498) and B10BR mice were injected with 3 x 106 luciferase+ murine acute T-cell lymphoma cells (Luc+ LBRM) through tail vein. Mice were treated with one or more daily s.c. injections of 10 μg VIPhyb. Survival of groups that received 1, 3 or 7 doses of VIPhyb were compared with PBS treated controls. Tumor growth was monitored weekly by bioluminescence imaging (BLI). Cytokine expression and expression of immune markers PD-1, PD-1H (VISTA), and PD-L1 on blood and spleen leukocytes were analyzed by flow cytometry. Results Long-term survival (day 80) of tumor-bearing B6 and B10BR mice that received a single-dose of VIPhyb one day before tumor inoculation was 80% for both mouse strains harboring both leukemia cells (p<0.01 vs. control, B6 n=10 and B10BR n=5, Figure 1). A single injection of VIPhyb was more effective than multiple doses in achieving long-term tumor-free survival, with 60% survival among C1498-tumor bearing mice (p<0.01 vs. controls, n=5) treated with 3 doses, and 46% survival in mice (p<0.01 vs. control, n=13) with C1498 and 40% survival in mice (p=0.06 vs. control, n=5,) with LBRM treated with 7 doses. None of the control mice inoculated with C1498 (n=21) or LBRM (n=10) that received PBS injections survived to day 55. To explore the therapeutic effect of VIPhyb on established tumors, B6 mice and B10BR were treated with 7 daily doses of VIPhyb starting 8 days or 15 days after inoculation with Luc+ C1498 or Luc+ LBRM, respectively. Survival of B6 mice bearing C1498 and B10BR mice bearing LBRM that received delayed administration of VIPhyb was 60% (p<0.001 vs. control, n=10) and 20% (p=0.039 vs. control, n=5), respectively, compared with 0 % survival (and faster tumor growth) among control mice (B6 n=10; B10BR n=5) that received PBS injections. Tumor burdens in VIPhyb treated mice measured by BLI showed slower tumor growth, and regression of established tumors compared with mice that received PBS (Figure 1). To elucidate the mechanisms whereby VIPhyb induced anti-tumor activities, expression of serum cytokines (IFN-γ, TNF-α, IL-10 and IL-13), expression of co-inhibitory molecules PD-1, PD-1H, PD-L1, and effector molecules Fas-L and granzyme B were measured in T-cells from VIPhyb- and PBS-treated tumor-bearing B10BR mice. Blood and splenic activated (CD62L-CD25+CD69+) and memory (CD62L+/-CD44+) CD8+ T-cells from VIPhyb-treated tumor–bearing mice expressed higher levels of IFN-γ, FAS-L and granzyme B, and lower levels of PD-1 (but not VISTA/PD-1H) in activated CD8+ T-cells compared with those from PBS-treated mice (Figure 2). Expression levels of TNF-α, IL-10, IL-13, and PD-L1 in blood and splenic dendritic cells were not different comparing with tumor-bearing VIPhyb-treated with PBS-treated control mice. Conclusion Treatment with a small molecule antagonist of VIP-receptor, VIPhyb, dramatically increased immune/T-cell specific anti-leukemic activity. The mechanism by which administration of a VIP receptor antagonist enhanced anti-tumor immunity includes increasing productions of IFN-γ, and expression of FAS-L and granzyme B in and decreasing expression of PD-1 in activated CD8+ T-cells, leading to enhance anti-tumor cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 77 (6) ◽  
pp. 3799-3808 ◽  
Author(s):  
Hanna Lewicki ◽  
Antoinette Tishon ◽  
Dirk Homann ◽  
Honoré Mazarguil ◽  
Françoise Laval ◽  
...  

ABSTRACT CD4 and CD8 T lymphocytes infiltrate the parenchyma of mouse brains several weeks after intracerebral, intraperitoneal, or oral inoculation with the Chandler strain of mouse scrapie, a pattern not seen with inoculation of prion protein knockout (PrP−/−) mice. Associated with this cellular infiltration are expression of MHC class I and II molecules and elevation in levels of the T-cell chemokines, especially macrophage inflammatory protein 1β, IFN-γ-inducible protein 10, and RANTES. T cells were also found in the central nervous system (CNS) in five of six patients with Creutzfeldt-Jakob disease. T cells harvested from brains and spleens of scrapie-infected mice were analyzed using a newly identified mouse PrP (mPrP) peptide bearing the canonical binding motifs to major histocompatibility complex (MHC) class I H-2b or H-2d molecules, appropriate MHC class I tetramers made to include these peptides, and CD4 and CD8 T cells stimulated with 15-mer overlapping peptides covering the whole mPrP. Minimal to modest Kb tetramer binding of mPrP amino acids (aa) 2 to 9, aa 152 to 160, and aa 232 to 241 was observed, but such tetramer-binding lymphocytes as well as CD4 and CD8 lymphocytes incubated with the full repertoire of mPrP peptides failed to synthesize intracellular gamma interferon (IFN-γ) or tumor necrosis factor alpha (TNF-α) cytokines and were unable to lyse PrP−/− embryo fibroblasts or macrophages coated with 51Cr-labeled mPrP peptide. These results suggest that the expression of PrPsc in the CNS is associated with release of chemokines and, as shown previously, cytokines that attract and retain PrP-activated T cells and, quite likely, bystander activated T cells that have migrated from the periphery into the CNS. However, these CD4 and CD8 T cells are defective in such an effector function(s) as IFN-γ and TNF-α expression or release or lytic activity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5011-5011
Author(s):  
Haiping He ◽  
Atsuko Takahashi ◽  
Yuki Yamamoto ◽  
Akiko Hori ◽  
Yuta Miharu ◽  
...  

Background: Mesenchymal stromal cells (MSC) are known to have the immunosuppressive ability and have been applied in clinic to treat acute graft-versus-host disease (GVHD), as one of severe complications after hematopoietic stem cells transplantation (HSCT) in Japan. However, MSC are activated to suppress the immune system only upon the stimulation of inflammatory cytokines and the clinical results of MSC therapies for acute GVHD are varied. It is ideal that MSC are primed to be activated and ready to suppress the immunity (=priming) before administration in vivo. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb - Tripterygium Wilfordii Hook F (TWHF). It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aim to use TPL as the activator for umbilical cord-derived MSC (UC-MSC) to entry stronger immunosuppressive status. Methods: The proliferation of UC-MSC with TPL at the indicated concentrations for different time of 24, 48, 72, and 96 hours. Cell counting kit-8(CCK-8) was added in the culture medium to detect cell toxicity and the absorbance was measured using microplate reader. Flow cytometry was used to identify the MSC surface markers expression. TPL-primed UC-MSC were once replaced with fresh medium and co-culture with mixed lymphocyte reaction (MLR) consisted with mononuclear cells (MNCs) stained with CFSE and irradiated allogenic dendritic cell line (PMDC05) in RPMI 1640 medium supplemented with 10 % FBS (complete medium). IDO-1, SOD1, and TGF-β gene expression in TPL-primed UC-MSC and UC-MSC induced by 10 ng/ml IFN-γ and/or 15 ng/ml TNF-α were evaluated by RT-PCR. PDL1 and PDL2 expression in TPL-primed UC-MSC and UC-MSC in response to IFN-γ and/or TNF-α were checked by Flowjo. Results: Exposure of TPL for UC-MSC for 72hour at the concentration above 0.1 μM resulted in the cell damage significantly. Therefore, we added TPL in UC-MSC at 0.01μM of TPL for up to 48 hours, then washed thourouphly for the following culture for experiments. To evaluate the influence of TPL on the surface markers of UC-MSC, we cultured UC-MSC for 4 hours in complete medium following culture with 0.01μM of TPL for 20 hours (TPL-primed UC-MSC). TPL-primed UC-MSC revealed positive for CD105, CD73, and CD90, negative for CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules as same as the non-primed UC-MSC. In MLR suppression by UC-MSC, the TPL-primed UC-MSC activity revealed stronger anti-proliferative effect on the CD4+ and CD8+ T cells activated by allogeneic DC than those of non-primed UC-MSC in MLR. Furthermore, the TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β in response to IFN-γ+/-TNF-α by RT-PCR and enhanced the expression of PD-L1 by FACS analysis. Discussion:In this study, we found the TPL-primed UC-MSC showed stronger antiproliferative potency on CD4+ and CD8+ T cells compared with non-primed UC-MSC. TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β stimulated by IFN-γ+/-TNF-α, although TPL alone did not induce these factors. Furthermore, we found that the PD1 ligand (PD-L1) was induced in TPL-primed UC-MSC, likely IFN-γ enhanced the PD-L1 expression, evaluated by flowcytometry. These results suggested that TPL-primed UC-MSC seemed more sensitive to be activated as the immunosuppressant. Here, we firstly report the new function of TPL to induce the upregulation of immunosuppressive effect, although the mechanisms of TPL inhibition to MSC need to be explore. Conclusively, TPL-primed UC-MSC might be applied for the immunosuppressive inducer of MSC. Figure Disclosures He: SASAGAWA Medical Scholarship: Research Funding; IMSUT Joint Research Project: Research Funding. Nagamura:AMED: Research Funding. Tojo:AMED: Research Funding; Torii Pharmaceutical: Research Funding. Nagamura-Inoue:AMED: Research Funding.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2014 ◽  
Vol 98 ◽  
pp. 310
Author(s):  
E. Wlodek ◽  
A. Jason ◽  
K. Saeb-Parsy ◽  
M. Chhubra ◽  
G. Pettigrew

Sign in / Sign up

Export Citation Format

Share Document