scholarly journals The Pim kinases control rapamycin-resistant T cell survival and activation

2005 ◽  
Vol 201 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Casey J. Fox ◽  
Peter S. Hammerman ◽  
Craig B. Thompson

Although Pim-1 or Pim-2 can contribute to lymphoid transformation when overexpressed, the physiologic role of these kinases in the immune response is uncertain. We now report that T cells from Pim-1−/−Pim-2−/− animals display an unexpected sensitivity to the immunosuppressant rapamycin. Cytokine-induced Pim-1 and Pim-2 promote the rapamycin-resistant survival of lymphocytes. The endogenous function of the Pim kinases was not restricted to the regulation of cell survival. Like the rapamycin target TOR, the Pim kinases also contribute to the regulation of lymphocyte growth and proliferation. Although rapamycin has a minimal effect on wild-type T cell expansion in vitro and in vivo, it completely suppresses the response of Pim-1−/−Pim-2−/− cells. Thus, endogenous levels of the Pim kinases are required for T cells to mount an immune response in the presence of rapamycin. The existence of a rapamycin-insensitive pathway that regulates T cell growth and survival has important implications for understanding how rapamycin functions as an immunomodulatory drug and for the development of complementary immunotherapeutics.

2003 ◽  
Vol 197 (7) ◽  
pp. 861-874 ◽  
Author(s):  
Ye Zheng ◽  
Monika Vig ◽  
Jesse Lyons ◽  
Luk Van Parijs ◽  
Amer A. Beg

Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-κB pathway in regulating mature T cell function by using CD4+ T cells from p50−/− cRel−/− mice, which exhibit virtually no inducible κB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-κB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-κB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-κB–inducing IκB kinase β showed that NF-κB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-κB in both IL-2 and Akt-induced survival pathways. In vivo, p50−/− cRel−/− mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-κB proteins in regulating T cell function in vivo and establish a critically important function of NF-κB in TCR-induced regulation of survival.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


2010 ◽  
Vol 208 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Jennifer H. Cox ◽  
Noelyn M. Kljavin ◽  
Nandhini Ramamoorthi ◽  
Lauri Diehl ◽  
Marcel Batten ◽  
...  

Interleukin-27 (IL-27) is a cytokine known to have both proinflammatory and immunoregulatory functions. The latter appear to dominate in vivo, where IL-27 suppresses TH17 responses and promotes the differentiation of Tr1 cells expressing interferon-γ and IL-10 and lacking forkhead box P3 (Foxp3). Accordingly, IL-27 receptor α (Il27ra)–deficient mice suffer from exacerbated immune pathology when infected with various parasites or challenged with autoantigens. Because the role of IL-27 in human and experimental mouse colitis is controversial, we studied the consequences of Il27ra deletion in the mouse T cell transfer model of colitis and unexpectedly discovered a proinflammatory role of IL-27. Absence of Il27ra on transferred T cells resulted in diminished weight loss and reduced colonic inflammation. A greater fraction of transferred T cells assumed a Foxp3+ phenotype in the absence of Il27ra, suggesting that IL-27 functions to restrain regulatory T cell (Treg) development. Indeed, IL-27 suppressed Foxp3 induction in vitro and in an ovalbumin-dependent tolerization model in vivo. Furthermore, effector cell proliferation and IFN-γ production were reduced in the absence of Il27ra. Collectively, we describe a proinflammatory role of IL-27 in T cell–dependent intestinal inflammation and provide a rationale for targeting this cytokine in pathological situations that result from a breakdown in peripheral immune tolerance.


2010 ◽  
Vol 207 (12) ◽  
pp. 2733-2749 ◽  
Author(s):  
Rachel S. Friedman ◽  
Peter Beemiller ◽  
Caitlin M. Sorensen ◽  
Jordan Jacobelli ◽  
Matthew F. Krummel

The real-time dynamics of the T cell receptor (TCR) reflect antigen detection and T cell signaling, providing valuable insight into the evolving events of the immune response. Despite considerable advances in studying TCR dynamics in simplified systems in vitro, live imaging of subcellular signaling complexes expressed at physiological densities in intact tissues has been challenging. In this study, we generated a transgenic mouse with a TCR fused to green fluorescent protein to provide insight into the early signaling events of the immune response. To enable imaging of TCR dynamics in naive T cells in the lymph node, we enhanced signal detection of the fluorescent TCR fusion protein and used volumetric masking with a second fluorophore to mark the T cells expressing the fluorescent TCR. These in vivo analyses and parallel experiments in vitro show minimal and transient incorporation of TCRs into a stable central supramolecular activating cluster (cSMAC) structure but strong evidence for rapid, antigen-dependent TCR internalization that was not contingent on T cell motility arrest or cSMAC formation. Short-lived antigen-independent TCR clustering was also occasionally observed. These in vivo observations demonstrate that varied TCR trafficking and cell arrest dynamics occur during early T cell activation.


2016 ◽  
Vol 213 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Samuele Calabro ◽  
Antonia Gallman ◽  
Uthaman Gowthaman ◽  
Dong Liu ◽  
Pei Chen ◽  
...  

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


2000 ◽  
Vol 68 (12) ◽  
pp. 6650-6655 ◽  
Author(s):  
Arthur O. Tzianabos ◽  
Anil Chandraker ◽  
Wiltrud Kalka-Moll ◽  
Francesca Stingele ◽  
Victor M. Dong ◽  
...  

ABSTRACT Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naı̈ve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus,Bacteroides fragilis, and a combination ofEnterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2453-2460 ◽  
Author(s):  
Helena Hyde ◽  
Nicola J. Borthwick ◽  
George Janossy ◽  
Michael Salmon ◽  
Arne N. Akbar

Abstract Activated interleukin-2 (IL-2)–dependent T cells express high levels of Bcl-2 protein. On cytokine withdrawal, Bcl-2 expression decreases and the cells die rapidly by apoptosis. We have previously shown that the survival of IL-2–deprived T cells can be promoted by factor(s) secreted by fibroblasts. Here we report that reduced glutathione (GSH), but not its oxidized counterpart GSSG, also enhances the in vitro survival of these cells. Exogenous GSH mediates its effect intracellularly, as (1) endogenous glutathione concentrations are increased up to fivefold in the presence of GSH, and (2) acivicin, an inhibitor of transmembrane GSH transport, abrogates GSH-dependent survival. The GSH-rescued T cells do not proliferate and express only low levels of Bcl-2, resembling WI38 fibroblast-rescued T cells. We, therefore, investigated a role for GSH in fibroblast-promoted T-cell survival. We show that WI38-promoted survival results in elevated GSH levels in surviving T cells and is abrogated by buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. Furthermore, both WI38-promoted T-cell survival and GSH upregulation are associated with large molecular weight molecules (<30 kD). Thus, the upregulation of GSH by WI38 fibroblasts appears to be crucial in their ability to enhance the survival of cytokine-deprived activated T cells in vitro.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1900-1900
Author(s):  
Emanuela I Sega ◽  
Dennis B Leveson-Gower ◽  
Mareike Florek ◽  
Robert S Negrin

Abstract Abstract 1900 GVHD is a major complication of bone marrow transplantation (BMT) and results from donor T cells becoming activated and reacting to host antigens. Recently, lymphocyte activation gene-3 (LAG-3) has emerged as an important molecule, negatively regulating T cell activation and has been proposed to play an important role in CD4+CD25+Foxp3+ regulatory T cell (Treg) function. We investigated the functional in vivo role of LAG-3 in Treg and conventional T cells in murine GVHD with the hypothesis that LAG-3 engagement diminishes alloreactive T cell responses after BMT. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown previously that donor Treg are able to suppress GVHD induced by donor allogeneic conventional T cells (Tcon). The role of LAG-3 in Treg function was evaluated both in vitro and in vivo by directly comparing Treg isolated from LAG-3−/− donor mice to Treg isolated from wild type donors (WT Treg). In vitro, in a mixed lymphocyte reaction assay, LAG-3−/− Treg efficiently suppressed the proliferation of alloreactive T cells in a manner similar to WT Treg. In vivo, a bioluminescent imaging assay (BLI) was utilized that allows for quantitative assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight loss, survival and GVHD score. Both LAG-3−/− Treg and WT Treg were equally potent at suppressing Tcon proliferation as illustrated by BLI of luc+ T cells and demonstrated a significant increase in median survival time (MST) as compared to mice receiving Tcon only (35 days for Tcon vs. 58 and 68 days for WT and LAG-3−/− Treg, respectively, P=0.03), but there was no significant difference in MST between the groups receiving WT and LAG-3−/− Treg. Interestingly, when LAG-3−/− Tcon were used to induce GVHD in the absence of Treg, GVHD lethality was accelerated. Thus, all mice receiving LAG-3−/− Tcon showed decreased survival and significantly lower body weights than mice receiving WT Tcon (P=0.017). GVHD scores of LAG-3−/− Tcon recipients were also significantly higher than WT Tcon recipients at Day 20 post BMT (6.0 vs. 2.2, P=<0.0001). The addition of WT Treg induced only a modest yet statistically significant increase in median survival in mice receiving both LAG-3−/− Tcon and WT Treg as compared to mice receiving LAG-3−/− Tcon alone (45 days vs. 14.5 days, P=0.0075). In contrast, WT Treg more efficiently suppressed the proliferation of WT Tcon, increasing the MST to 70 days versus a MST of 26 days for mice receiving WT Tcon (P=0.0002). Re-isolation experiments using CFSE-labeled Tcon did not show differences in proliferation between WT and LAG-3−/− Tcon at five days following BMT. Since LAG-3 is upregulated as early as 2 days after T cell activation and gradually decreases over the next few days, is it possible that a difference in proliferation could be detected at an earlier timepoint thus explaining the difference in potency between the WT and LAG-3−/− Tcon. Together our results indicate, contrary to previous published results, that the absence of the LAG-3 molecule on Treg does not impair Treg function in our mouse model of acute GVHD. However, the absence of LAG-3 on Tcon induces a more severe GVHD suggesting that LAG-3 engagement on donor T cells diminishes alloreactive T cell response after BMT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2003 ◽  
Vol 77 (13) ◽  
pp. 7393-7400 ◽  
Author(s):  
Morten Lindow ◽  
Anneline Nansen ◽  
Christina Bartholdy ◽  
Annette Stryhn ◽  
Nils J. V. Hansen ◽  
...  

ABSTRACT The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhibit virus-induced T-cell-mediated inflammation. This was done by use of the well-established model system murine lymphocytic choriomeningitis virus infection. Mice were infected in the footpad, and the induced CD8+ T-cell-dependent inflammation was evaluated in mice subjected to treatment with vMIP-II. We found that inflammation was markedly inhibited in mice treated during the efferent phase of the antiviral immune response. In vitro studies revealed that vMIP-II inhibited chemokine-induced migration of activated CD8+ T cells, but not T-cell-target cell contact, granule exocytosis, or cytokine release. Consistent with these in vitro findings treatment with vMIP-II inhibited the adoptive transfer of a virus-specific delayed-type hypersensitivity response in vivo, but only when antigen-primed donor cells were transferred via the intravenous route and required to migrate actively, not when the cells were injected directly into the test site. In contrast to the marked inhibition of the effector phase, the presence of vMIP-II during the afferent phase of the immune response did not result in significant suppression of virus-induced inflammation. Taken together, these results indicate that chemokine-induced signals are pivotal in directing antiviral effector cells toward virus-infected organ sites and that vMIP-II is a potent inhibitor of type 1 T-cell-mediated inflammation.


Sign in / Sign up

Export Citation Format

Share Document