scholarly journals αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis

2007 ◽  
Vol 204 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Audrey Le Floc'h ◽  
Abdelali Jalil ◽  
Isabelle Vergnon ◽  
Béatrice Le Maux Chansac ◽  
Vladimir Lazar ◽  
...  

Various T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)–mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin αE(CD103)β7, often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103+ TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin+/intercellular adhesion molecule 1− autologous tumor cells, CD103− peripheral blood lymphocyte (PBL)-derived counterparts are inefficient. This cell killing is abrogated after treatment of the TIL clones with a blocking anti-CD103 monoclonal antibody or after targeting E-cadherin in the tumor using ribonucleic acid interference. Confocal microscopy analysis also demonstrated that αEβ7 is recruited at the immunological synapse and that its interaction with E-cadherin is required for cytolytic granule polarization and subsequent exocytosis. Moreover, we report that the CD103− profile, frequently observed in PBL-derived CTL clones and associated with poor cytotoxicity against the cognate tumor, is up-regulated upon TCR engagement and transforming growth factor β1 treatment, resulting in strong potentiation of antitumor lytic function. Thus, CD8+/CD103+ tumor-reactive T lymphocytes infiltrating epithelial tumors most likely play a major role in antitumor cytotoxic response through αEβ7–E-cadherin interactions.

2001 ◽  
Vol 193 (11) ◽  
pp. 1295-1302 ◽  
Author(s):  
Megan K. Levings ◽  
Romina Sangregorio ◽  
Maria-Grazia Roncarolo

Active suppression by T regulatory (Tr) cells plays an important role in the downregulation of T cell responses to foreign and self-antigens. Mouse CD4+ Tr cells that express CD25 possess remarkable suppressive activity in vitro and in autoimmune disease models in vivo. Thus far, the existence of a similar subset of CD25+CD4+ Tr cells in humans has not been reported. Here we show that human CD25+CD4+ Tr cells isolated from peripheral blood failed to proliferate and displayed reduced expression of CD40 ligand (CD40L), in response to T cell receptor–mediated polyclonal activation, but strongly upregulated cytotoxic T lymphocyte–associated antigen (CTLA)-4. Human CD25+CD4+ Tr cells also did not proliferate in response to allogeneic antigen-presenting cells, but they produced interleukin (IL)-10, transforming growth factor (TGF)-β, low levels of interferon (IFN)-γ, and no IL-4 or IL-2. Importantly, CD25+CD4+ Tr cells strongly inhibited the proliferative responses of both naive and memory CD4+ T cells to alloantigens, but neither IL-10, TGF-β, nor CTLA-4 seemed to be directly required for their suppressive effects. CD25+CD4+ Tr cells could be expanded in vitro in the presence of IL-2 and allogeneic feeder cells and maintained their suppressive capacities. These findings that CD25+CD4+ Tr cells with immunosuppressive effects can be isolated from peripheral blood and expanded in vitro without loss of function represent a major advance towards the therapeutic use of these cells in T cell–mediated diseases.


2017 ◽  
Vol 114 (10) ◽  
pp. 2693-2698 ◽  
Author(s):  
Marianne Strazza ◽  
Inbar Azoulay-Alfaguter ◽  
Michael Peled ◽  
Alan V. Smrcka ◽  
Edward Y. Skolnik ◽  
...  

Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)–expressing cells. Structure–function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs.


1994 ◽  
Vol 179 (1) ◽  
pp. 359-363 ◽  
Author(s):  
B Ybarrondo ◽  
A M O'Rourke ◽  
A A Brian ◽  
M F Mescher

A rapid induction of adhesion to immobilized intercellular adhesion molecule (ICAM)-1 occurs when cytotoxic T lymphocytes (CTL) are stimulated with either soluble anti-T cell receptor (TCR) monoclonal antibodies (mAb) or with immobilized alloantigen, and this binding is blocked by the addition of anti-lymphocyte function-associated (LFA)-1 mAbs. Requirements for activating LFA-1 adhesion to ICAM-1 are similar to those found for induction of binding to immobilized fibronectin (FN), but distinct from those for activating CD8-mediated adhesion to class I major histocompatibility complex. A distinct role for LFA-1 in co-signaling for TCR-dependent degranulation could not be demonstrated. In contrast, both CD8 and the FN-binding integrin provide costimulatory signals for this response. Thus, if co-signaling via LFA-1 occurs, it clearly differs from that provided by CD8 or the FN-binding integrin. On the basis of antibody blocking effects, alloantigen-dependent activation of adhesion to ICAM-1 involves both the TCR and CD8. These results support a view of CTL activation as a cascade of adhesion and signaling events, with different coreceptors making distinct contributions.


2005 ◽  
Vol 202 (8) ◽  
pp. 1031-1036 ◽  
Author(s):  
Gabriele Campi ◽  
Rajat Varma ◽  
Michael L. Dustin

T cell receptor (TCR) microclusters form within seconds of T cell contact with supported planar bilayers containing intercellular adhesion molecule-1 and agonist major histocompatibility complex (MHC)–peptide complexes, and elevation of cytoplasmic Ca2+ is observed within seconds of the first detectable microclusters. At 0–30 s after contact, TCR microclusters are colocalized with activated forms of Lck, ZAP-70, and the linker for activation of T cells. By 2 min, activated kinases are reduced in the older central microclusters, but are abundant in younger peripheral microclusters. By 5 min, TCR in the central supramolecular activation cluster have reduced activated kinases, whereas faint peripheral TCR microclusters efficiently generated activated Lck and ZAP-70. TCR microcluster formation is resistant to inhibition by Src family kinase inhibitor PP2, but is abrogated by actin polymerization inhibitor latrunculin A. We propose that Src kinase–independent formation of TCR microclusters in response to agonist MHC–peptide provides an actin-dependent scaffold for signal amplification.


2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


Science ◽  
2019 ◽  
Vol 364 (6438) ◽  
pp. eaav2501 ◽  
Author(s):  
David Merrick ◽  
Alexander Sakers ◽  
Zhazira Irgebay ◽  
Chihiro Okada ◽  
Catherine Calvert ◽  
...  

Metabolic health depends on the capacity of adipose tissue progenitor cells to undergo de novo adipogenesis. The cellular hierarchy and mechanisms governing adipocyte progenitor differentiation are incompletely understood. Through single-cell RNA sequence analyses, we show that the lineage hierarchy of adipocyte progenitors consists of distinct mesenchymal cell types that are present in both mouse and human adipose tissues. Cells marked by dipeptidyl peptidase–4 (DPP4)/CD26 expression are highly proliferative, multipotent progenitors. During the development of subcutaneous adipose tissue in mice, these progenitor cells give rise to intercellular adhesion molecule–1 (ICAM1)/CD54–expressing (CD54+) committed preadipocytes and a related adipogenic cell population marked by Clec11a and F3/CD142 expression. Transforming growth factor–β maintains DPP4+ cell identity and inhibits adipogenic commitment of DPP4+ and CD142+ cells. Notably, DPP4+ progenitors reside in the reticular interstitium, a recently appreciated fluid-filled space within and between tissues, including adipose depots.


1991 ◽  
Vol 173 (3) ◽  
pp. 681-686 ◽  
Author(s):  
D J Moss ◽  
S R Burrows ◽  
G D Baxter ◽  
M F Lavin

Epstein-Barr virus-specific cytotoxic T lymphocyte clones were shown to be an effective target for their own lysis when incubated in the presence of their specific epitopes but not in the presence of irrelevant epitopes. The mode of cell killing appeared to be by apoptosis and was prevented by previously described inhibitors of the process. Degranulation, as measured by serine esterase activity, was involved in this form of T cell-T cell killing. This is the first report of T cell-T cell killing by apoptosis and is only observed in the presence of a specific epitope. This result may be of significance in the use of peptide-based vaccines.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3344
Author(s):  
Aishwarya Gokuldass ◽  
Arianna Draghi ◽  
Krisztian Papp ◽  
Troels Holz Borch ◽  
Morten Nielsen ◽  
...  

Background: Human intratumoral T cell infiltrates can be defined by quantitative or qualitative features, such as their ability to recognize autologous tumor antigens. In this study, we reproduced the tumor-T cell interactions of individual patients to determine and compared the qualitative characteristics of intratumoral T cell infiltrates across multiple tumor types. Methods: We employed 187 pairs of unselected tumor-infiltrating lymphocytes (TILs) and autologous tumor cells from patients with melanoma, renal-, ovarian-cancer or sarcoma, and single-cell RNA sequencing data from a pooled cohort of 93 patients with melanoma or epithelial cancers. Measures of TIL quality including the proportion of tumor-reactive CD8+ and CD4+ TILs, and TIL response polyfunctionality were determined. Results: Tumor-specific CD8+ and CD4+ TIL responses were detected in over half of the patients in vitro, and greater CD8+ TIL responses were observed in melanoma, regardless of previous anti-PD-1 treatment, compared to renal cancer, ovarian cancer and sarcoma. The proportion of tumor-reactive CD4+ TILs was on average lower and the differences less pronounced across tumor types. Overall, the proportion of tumor-reactive TILs in vitro was remarkably low, implying a high fraction of TILs to be bystanders, and highly variable within the same tumor type. In situ analyses, based on eight single-cell RNA-sequencing datasets encompassing melanoma and five epithelial cancers types, corroborated the results obtained in vitro. Strikingly, no strong correlation between the proportion of CD8+ and CD4+ tumor-reactive TILs was detected, suggesting the accumulation of these responses in the tumor microenvironment to follow non-overlapping biological pathways. Additionally, no strong correlation between TIL responses and tumor mutational burden (TMB) in melanoma was observed, indicating that TMB was not a major driving force of response. No substantial differences in polyfunctionality across tumor types were observed. Conclusions: These analyses shed light on the functional features defining the quality of TIL infiltrates in cancer. A significant proportion of TILs across tumor types, especially non-melanoma, are bystander T cells. These results highlight the need to develop strategies focused on the tumor-reactive TIL subpopulation.


1998 ◽  
Vol 187 (12) ◽  
pp. 1927-1940 ◽  
Author(s):  
Masahiko Taguchi ◽  
Deepak Sampath ◽  
Takeharu Koga ◽  
Mario Castro ◽  
Dwight C. Look ◽  
...  

Immune cell migration into and through mucosal barrier sites in general and airway sites in particular is a critical feature of immune and inflammatory responses, but the determinants of transepithelial (unlike transendothelial) immune cell traffic are poorly defined. Accordingly, we used primary culture airway epithelial cells and peripheral blood mononuclear cells to develop a cell monolayer system that allows for apical-to-basal and basal-to-apical T cell transmigration that can be monitored with quantitative immunofluorescence flow cytometry. In this system, T cell adhesion and subsequent transmigration were blocked in both directions by monoclonal antibodies (mAbs) against lymphocyte function-associated antigen 1 (LFA-1) or intercellular adhesion molecule 1 (ICAM-1) (induced by interferon γ [IFN-γ] treatment of epithelial cells). The total number of adherent plus transmigrated T cells was also similar in both directions, and this pattern fit with uniform presentation of ICAM-1 along the apical and basolateral cell surfaces. However, the relative number of transmigrated to adherent T cells (i.e., the efficiency of transmigration) was increased in the basal-to-apical relative to the apical-to-basal direction, so an additional mechanism was needed to mediate directional movement towards the apical surface. Screening for epithelial-derived β-chemokines indicated that IFN-γ treatment caused selective expression of RANTES (regulated upon activation, normal T cell expressed and secreted), and the functional significance of this finding was demonstrated by inhibition of epithelial–T cell adhesion and transepithelial migration by anti-RANTES mAbs. In addition, we found that epithelial (but not endothelial) cells preferentially secreted RANTES through the apical cell surface thereby establishing a chemical gradient for chemotaxis across the epithelium to a site where they may be retained by high levels of RANTES and apical ICAM-1. These patterns for epithelial presentation of ICAM-1 and secretion of RANTES appear preserved in airway epithelial tissue studied either ex vivo with expression induced by IFN-γ treatment or in vivo with endogenous expression induced by inflammatory disease (i.e., asthma). Taken together, the results define how the patterns for uniform presentation of ICAM-1 along the cell surface and specific apical sorting of RANTES may serve to mediate the level and directionality of T cell traffic through epithelium (distinct from endothelium) and provide a basis for how this process is precisely coordinated to route immune cells to the mucosal surface and maintain them there under normal and stimulated conditions.


Sign in / Sign up

Export Citation Format

Share Document