scholarly journals Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα

2015 ◽  
Vol 212 (2) ◽  
pp. 185-202 ◽  
Author(s):  
Jana L. Mooster ◽  
Severine Le Bras ◽  
Michel J. Massaad ◽  
Haifa Jabara ◽  
Juhan Yoon ◽  
...  

Patients with ectodermal dysplasia with immunodeficiency (ED-ID) caused by mutations in the inhibitor of NF-κB α (IκBα) are susceptible to severe recurrent infections, despite normal T and B cell numbers and intact in vitro lymphocyte function. Moreover, the outcome of hematopoietic stem cell transplantation (HSCT) in these patients is poor despite good engraftment. Mice heterozygous for the IκBα S32I mutation found in patients exhibited typical features of ED-ID. Strikingly, the mice lacked lymph nodes, Peyer’s patches, splenic marginal zones, and follicular dendritic cells and failed to develop contact hypersensitivity (CHS) or form germinal centers (GCs), all features not previously recognized in patients and typical of defective noncanonical NF-κB signaling. Lymphotoxin β receptor (LTβR)–driven induction of chemokines and adhesion molecules mediated by both canonical and noncanonical NF-κB pathways was impaired, and levels of p100 were markedly diminished in the mutant. IκBα mutant→Rag2−/−, but not WT→IκBα mutant, bone marrow chimeras formed proper lymphoid organs and developed CHS and GCs. Defective architectural cell function explains the immunodeficiency and poor outcome of HSCT in patients with IκBα deficiency and suggests that correction of this niche is critical for reconstituting their immune function.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


2016 ◽  
Vol 44 (04) ◽  
pp. 803-815 ◽  
Author(s):  
Lin Bai ◽  
Guiying Shi ◽  
Yajun Yang ◽  
Wei Chen ◽  
Lianfeng Zhang

Anti-aging has always been a popular topic, and there are many claims about the existence of factors that can slow, stop, or even reverse the aging process. Siraitia grosuenorii, a local fruit in china, has been used for the treatment of gastritis, sore throats, and whooping cough in traditional Chinese medicine. The individuals who took the juice of Siraitia grosuenorii regularly had increased longevity in the Guangxi Province, which is located in the Southern part of China. In this paper, we fed mice with Siraitia grosuenorii for 10 months to identify the role of Siraitia grosuenorii in anti-aging and to investigate its corresponding mechanism. The results showed that mice fed with Siraitia grosuenorii displayed a slower aging process. The extension of the aging process was due to the enhanced function of HSCs. FACS analysis showed that the number of LSKs, LT-HSCs, ST-HSCs and MPPs from Siraitia grosuenorii mice was decreased. In vitro, a clonigenic assay showed that LT-HSCs from Siraitia grosuenorii mice increased the ability of self-renewal. Moreover, Siraitia grosuenorii mice maintained the quiescence of LSKs, decreased the level of ROS and reduced the amount of senescence associated β-gal positive cells. Furthermore, Siraitia grosuenorii mice decreased the expression of senescence-associated proteins. Siraitia grosuenorii maintained quiescence, decreased senescence and enhanced the function of HSCs, slowing the aging process of mice.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


Blood ◽  
2009 ◽  
Vol 113 (12) ◽  
pp. 2661-2672 ◽  
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Dengli Hong ◽  
Neil P. Rodrigues ◽  
...  

Abstract Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G0 residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34+CD38−HoechstloPyronin Ylo) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2–conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21CIP1 and p27KIP1 do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2hi) failed to contribute to hematopoiesis in nonobese diabetic–severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2lo cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1701-1701
Author(s):  
Leonie M. Kamminga ◽  
Kyrjon van Pelt ◽  
Bert Dontje ◽  
Gerald de Haan

Abstract Recently, several studies have suggested that the family of cyclin-dependent kinase inhibitors plays a crucial role in regulating hematopoietic stem and progenitor pool size. However, due to a lack of appropriate transplantation models, competitive repopulation assays have not been performed. In the present study we have backcrossed a p21 null allele from mice with a mixed genetic background to inbred C57BL/6 mice. As expected, mouse embryonic fibroblasts (MEFs) derived from B6p21−/− mice failed to undergo senescence, whereas B6p21+/+ MEFs show a normal senescent phenotype. Moreover, B6p21−/− CFU-GM were more resistant to radiation compared to B6p21+/+. In contrast, homozygous deletion of the p21 allele did not affect the percentage of Lin− Sca-1+ c-kit+ cells in S-phase when measured by 7-AAD staining, and did not result in any alterations of in vitro cobblestone area forming cell activity. In a competitive repopulating assay different ratios of Ly5.2 BM cells from B6p21−/− or B6p21+/+ littermates were competed with 2 x 106 Ly5.1 B6 BM cells. Assuming similar repopulating capacity of both cell populations, expected chimerism was calculated. Surprisingly, observed and expected chimerism were identical, strongly suggesting that B6p21−/− stem cells had completely normal competitive repopulating activity for up to 1 year after transplant. Our data argue against an important role of p21 in maintaining stem cell function during steady-state hematopoiesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 302-302
Author(s):  
Jean-Baptiste Micol ◽  
Nicolas Duployez ◽  
Alessandro Pastore ◽  
Robert Williams ◽  
Eunhee Kim ◽  
...  

Abstract Mutations in Addition of Sex Combs Like 1 (ASXL1) are common in patients with myeloid leukemias. More recently, mutations in ASXL2, a paralog of ASXL1 with ~40% shared amino acid homology, have been discovered to occur specifically in patients with acute myeloid leukemia (AML) patients bearing the RUNX1-ETO (AML1-ETO; RUNX1-RUNX1T1) translocation and are amongst the most common mutations in RUNX1-ETO AML (mutated in 20-25% of patients). Although ASXL1 is critical for Polycomb Repressive Complex 2 function in myeloid hematopoietic cells and loss of Asxl1 recapitulates key aspects of myelodysplastic syndrome (MDS), the function of ASXL2 in normal or malignant hematopoiesis is unknown. We therefore set out to perform a functional comparison of ASXL1and ASXL2on hematopoiesis and transcription and determine the functional basis for frequent mutations in RUNX1-ETO AML. In vitro analyses of ASXL2 insertion/deletion mutations revealed that these mutations resulted in substantial reduction of ASXL2 protein expression, stability, and half-life. We therefore generated Asxl2 conditional knockout (cKO) mice to delineate the effect of ASXL2 loss on hematopoiesis. Competitive (Fig. 1A) and noncompetitive transplantation revealed that Asxl2 or compound Asxl1/2 loss resulted in cell-autonomous, rapid defects of hematopoietic stem cell function, self-renewal, and number with peripheral blood leukopenia and thrombocytopenia but without any obvious MDS features- phenotypes distinct from Asxl1 cKO mice. Mice with heterozygous deletion of Asxl2 demonstrated an intermediate phenotype between control and homozygous cKO mice indicating a gene dosage effect of Asxl2 loss. RNA sequencing (RNA-seq) of hematopoietic stem/progenitor cells from Asxl2- and Asxl1-deficient mice revealed twenty-fold greater differentially expressed genes in Asxl2 cKO mice relative to Asxl1 cKO mice. Interestingly, genes differentially expressed with Asxl2 loss significantly overlapped with direct transcriptional targets of RUNX1-ETO, findings not seen in Asxl1 cKO mice (Fig. 1B). Asxl2 target genes appeared to also be targets of RUNX1, a key gene repressed by RUNX1-ETO to promote leukemogenesis. Consistent with this, genome-wide analysis of Asxl2 binding sites through anti-Asxl2 ChIP-seq revealed that Asxl2 binding sites substantially overlap with those of Runx1. Overall, the above data suggest that Asxl2 may be a critical mediator of RUNX1-ETO mediated leukemogenesis by affecting the expression of RUNX1 and/or RUNX1-ETO target genes. RNA-seq of primary RUNX1-ETO AML patient samples revealed that ASXL2-mutant RUNX1-ETO patients form a distinct transcriptional subset of RUNX1-ETO AML (Fig. 1C) suggesting a specific role of ASXL2 in leukemogenesis. To functionally interrogate the role of ASXL2 loss in RUNX1-ETO mediated leukemogenesis we first utilized an in vitro model with RNAi-mediated depletion of ASXL1 or ASXL2 in the SKNO1 cell line (the only ASXL-wildtype human RUNX1-ETO cell line). RNA-seq revealed distinct target genes dysregulated by ASXL1 versus ASXL2 loss in these cells without any significant overlap. Anti-ASXL2, RUNX1, and RUNX1-ETO ChIPSeq in SKNO1 cells revealed significant co-occupancy of ASXL2 with RUNX1 and RUNX1-ETO binding sites. Moreover, analysis of histone modification ChIPSeq revealed an enrichment in intergenic and enhancer H3K4me1 abundance following ASXL2 loss in SKNO1 cells. Next, to understand the in vivo effects of Asxl2 loss in the context of RUNX1-ETO, we performed retroviral bone marrow (BM) transplantation assays using RUNX1-ETO9a in Asxl2 cKO mice. In contrast to the failure of hematopoietic stem cell function with Asxl2 deletion alone, mice reconstituted with BM cells expressing RUNX1-ETO9a in Asxl2-deficient background had a shortened leukemia-free survival compared to Asxl2 -wildtype control. Overall, these data reveal that ASXL2 is required for hematopoiesis and has differing biological and transcriptional functions from ASXL1. Moreover, this work identifies ASXL2 as a novel mediator of RUNX1-ETOtranscriptional function and provides a new model of penetrant RUNX1-ETO AML based on genetic events found in a substantial proportion of t(8;21) AML patients. Further interrogation of the enhancer alterations generated by ASXL2 loss in RUNX1-ETO AML may highlight new therapeutic approaches for this subset of AML. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 3001-3006 ◽  
Author(s):  
Andreas Weigert ◽  
Benjamin Weichand ◽  
Divya Sekar ◽  
Weixiao Sha ◽  
Christina Hahn ◽  
...  

Abstract Hypoxia-inducible factors (HIFs) regulate hematopoiesis in the embryo and maintain hematopoietic stem cell function in the adult. How hypoxia and HIFs contribute to hematopoietic lineage differentiation in the adult is ill defined. Here we provide evidence that HIF-1 limits differentiation of precursors into plasmacytoid dendritic cells (pDCs). Low oxygen up-regulated inhibitor of DNA binding 2 (ID2) and suppressed Flt3-L–induced differentiation of bone marrow cells to pDCs in wild-type but not HIF-1αfl/fl LysM-Cre bone marrow cells. Moreover, pDC differentiated normally in hypoxic ID2−/− bone marrow cultures. Finally, we observed elevated pDC frequencies in bone marrow, blood, and spleen of HIF-1αfl/fl LysM-Cre and ID2−/−, but not HIF-2αfl/fl LysM-Cre mice. Our data indicate that the low oxygen content in the bone marrow might limit pDC development. This might be an environmental mechanism to restrict the numbers of these potentially autoreactive cells.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3044-3050 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker- negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c- kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c- kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.


1975 ◽  
Vol 141 (1) ◽  
pp. 216-226 ◽  
Author(s):  
D E Mosier ◽  
B M Johnson

The relative functional maturity of neonatal mouse spleen T- and B-cell populations was assessed by comparing the ability to respond to the thymic-independent antigen, DNP-Ficoll, or thymic-dependent SRBC by producing antibody in vitro. Although mouse spleen cells responded to DNP-Ficoll at an earlier age than they responded to SRBC or TNP-SRBC, the reason for the lag in the T-dependent response was confounded by the finding of high numbers of suppressor T lymphocytes in the neonatal spleen. Thus, small numbers of neonatal spleen T cells or thymocytes significantly decreased the in vitro antibody response of adult spleen cells. Although B lymphocytes appear to be functionally mature soon after birth, their acitivity may be modulated by an excess of suppressor T cells; e.g., the reconstitution of helper cell function in the neonatal spleen required anti-theta treatment before addition of adult helper cells. Suppressive activity attributable to T cells seems to play a dominant role in determining the ability of the neonatal animal to react positively or negatively to antigenic stimulation.


2014 ◽  
Vol 211 (6) ◽  
pp. 1109-1122 ◽  
Author(s):  
Meryem Jarjour ◽  
Audrey Jorquera ◽  
Isabelle Mondor ◽  
Stephan Wienert ◽  
Priyanka Narang ◽  
...  

Follicular dendritic cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods, therefore, allow only limited understanding of the genuine immunobiology of FDCs in their native habitat. Herein, we used various multicolor fate mapping systems to investigate the ontogeny and dynamics of lymph node (LN) FDCs in situ. We show that LN FDC networks arise from the clonal expansion and differentiation of marginal reticular cells (MRCs), a population of lymphoid stromal cells lining the LN subcapsular sinus. We further demonstrate that during an immune response, FDCs accumulate in germinal centers and that neither the recruitment of circulating progenitors nor the division of local mature FDCs significantly contributes to this accumulation. Rather, we provide evidence that newly generated FDCs also arise from the proliferation and differentiation of MRCs, thus unraveling a critical function of this poorly defined stromal cell population.


Sign in / Sign up

Export Citation Format

Share Document