scholarly journals Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders

2017 ◽  
Vol 214 (11) ◽  
pp. 3219-3238 ◽  
Author(s):  
Hua Jiang ◽  
Hongbin He ◽  
Yun Chen ◽  
Wei Huang ◽  
Jinbo Cheng ◽  
...  

The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3670-3670
Author(s):  
Laura Hurtado-Navarro ◽  
Ernesto J Cuenca ◽  
Eva Soler ◽  
Andres Jerez ◽  
Helios Martínez-Banaclocha ◽  
...  

Abstract It has been recently shown that RAS mutations, which occur in 11-38% of Chronic Myelomonocytic Leukemia (CMML), do not only act via RAS/MEK/ERK signaling, but contribute to the disease through NLRP3 inflammasome activation (Hamarsheh, Nat Comm 2020). Despite a therapeutic approach based on NLRP3/IL1β axis blockade, as bring to a stem cell transplantation (SCT) has been proposed, data on the efficacy of IL1β inhibitors in hematopoietic neoplasms is limited. A 55 year old man with previous autoinflammatory episodes (constrictive pericarditis) was diagnosed on September 2020 of CMML-1 KRAS G12D (Inter-2). Due to worsening (orchiepidedymitis, pneumonitis, cellulitis), and the impossibility of performing an SCT at that time, on December 02 2020 he started anakinra (a IL1β receptor antagonist) with good response. Due to new episodes of autoinflammation, anakinra was discontinued (12 April 2021) with severe clinical worsening (heart failure) and no response to diuretic/corticosteroid. After anakinra was restarted (04 May 2021), a progressive improvement was seen, allowing a successful pericardiectomy before an SCT. We obtained blood samples from this patient (at different times) and plasma and whole blood samples from 11 and 5 other CMML KRAS mut patients, respectively. We also included CMML patients without KRAS mutations (KRAS wt) (n=8), with sepsis (n=5) and healthy individuals (n=9). Plasma levels of 15 inflammatory cytokines associated with NLRP3 inflammasome and NFkB pathways were measured using a customized MILLIPLEX ® kit. The inflammasome marker activation assays were conducted as previously published (Martínez García JJ, Nature Comm 2019). Compared to healthy controls, KRAS wt CMML patients did not show differences in any cytokine tested, except IL6, while KRAS mut patients showed significantly higher levels of IL1α, IL1ra, IL18, IL12p40 (associated with NLRP3 inflammasome), IL6, IL8 (associated with NFkB pathway) and M-CSF (Fig. 1A B). Compared to KRAS wt CMML patients, those with KRAS mut showed higher levels of cytokines associated with both the NLRP3 and NFkB pathways, reaching statistical significance for those related with NLRP3 inflammasome. We also observed changes in inflammasome related cytokines before and after anakinra (Table 1). This cytokine profile in the plasma made us analyze the oligomerization of ASC as a marker of inflammasome activation in monocytes of KRAS mut CMML. We found that in all cases of KRAS mut CMML patients around 30 to 80% of monocytes presented oligomers of ASC measured by the time of flight assay, while in healthy donors and KRAS wt CMML patients, ASC oligomerization occurred upon NLRP3 inflammasome activation with lipopolysaccharide (LPS) + ATP or Pyrin inflammasome activation with LPS and Clostridium difficile B toxin (TcdB) (Fig. 2A). Ex vivo activation of PBMCs from KRAS mut CMML patients showed that despite the high percentage of cells with ASC oligomers, very low levels of IL1b released from these cells, even when NLRP3 was activated with LPS+ATP (Fig. 2B), suggesting that this inflammasome is activated in vivo and could not be further activated ex vivo. As control, Pyrin inflammasome activation in PBMCs from KRAS mut CMML was able to induce IL1b release similarly to healthy controls (Fig. 2B). We then found that anakinra treatment of the KRAS mut CMML patient followed in this study, resulted in a decrease of the percentage of monocytes with basal active inflammasomes (Fig. 2C). A little ex vivo activation of the NLRP3 inflammasome was obtained when cells were treated with LPS+ATP, while Pyrin inflammasome was activated at normal levels after LPS+TcdB treatment (Fig. 2D). The inflammasome basal activation increased in the monocytes of the KRAS mut CMML patient after anakinra withdraw and during clinical deterioration and restarting anakinra (second arrow) decreased the basal percentage of monocytes with ASC oligomers (Fig. 2C). Since ASC oligomers are associated to pyroptosis via caspase 1 activation and gasdermin D processing, we then analyzed pyroptotic markers in the plasma of the patient during the time. ASC was increased when monocytes presented elevated percentage of ASC oligomers (Fig. 2E), suggesting that ASC detection could be a promising biomarker. Overall, we show that, in vivo, the NLRP3 inflammasome activation of KRAS mut CMML patients may revert with IL1β blockers. ASC could identify those candidates to receive this therapy. PI18/00316 Figure 1 Figure 1. Disclosures Jerez: Novartis: Consultancy; BMS: Consultancy; GILEAD: Research Funding. Bellosillo: Thermofisher Scientific: Consultancy, Speakers Bureau; Roche: Research Funding, Speakers Bureau; Qiagen: Consultancy, Speakers Bureau. Hernández-Rivas: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ferrer Marin: Cty: Research Funding; Incyte: Consultancy, Research Funding; Novartis: Speakers Bureau.


2021 ◽  
Vol 14 (6) ◽  
pp. 588
Author(s):  
Chi-Han Huang ◽  
Shu-Chi Wang ◽  
I-Chen Chen ◽  
Yi-Ting Chen ◽  
Po-Len Liu ◽  
...  

Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1β production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1β, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Yang ◽  
Xun-jia Ye ◽  
Ming-ye Chen ◽  
Hong-chun Li ◽  
Yao-feng Wang ◽  
...  

Taraxasterol (TAS) is an active ingredient of Dandelion (Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1β (IL-1β) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1β levels in vivo. Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziying Wei ◽  
Xiaoyan Zhan ◽  
Kaixin Ding ◽  
Guang Xu ◽  
Wei Shi ◽  
...  

The abnormal activation of the NLRP3 inflammasome is closely related to the occurrence and development of many inflammatory diseases. Targeting the NLRP3 inflammasome has been considered an efficient therapy to treat infections. We found that dihydrotanshinone I (DHT) specifically blocked the canonical and non-canonical activation of the NLRP3 inflammasome. Nevertheless, DHT had no relation with the activation of AIM2 or the NLRC4 inflammasome. Further study demonstrated that DHT had no influences on potassium efflux, calcium flux, or the production of mitochondrial ROS. We also discovered that DHT suppressed ASC oligomerization induced by NLRP3 agonists, suggesting that DHT inhibited the assembly of the NLRP3 inflammasome. Importantly, DHT possessed a significant therapeutic effect on NLRP3 inflammasome–mediated sepsis in mice. Therefore, our results aimed to clarify DHT as a specific small-molecule inhibitor for the NLRP3 inflammasome and suggested that DHT can be used as a potential drug against NLRP3-mediated diseases.


2021 ◽  
Author(s):  
Sahabuddin Ahmed ◽  
Samir Ranjan Panda ◽  
Mohit Kwatra ◽  
Bidya Dhar Sahu ◽  
VGM Naidu

Abstract Several activators of NLRP3 inflammasome have been described; however, the central mechanisms of NLRP3 inflammasome activation in brain microglia, especially at the activating step through free radical generation, still require further clarification. Hence the present study aimed to investigate the role of free radicals in activating NLRP3 inflammasome driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in vitro and in vivo models of Parkinson’s disease. Initial priming of microglial cells with lipopolysaccharide (LPS) following treatment with hydrogen peroxide (H2O2) induces NF-κB translocation to nucleus with robust generation of free radicals that act as Signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses nuclear translocation of NF-κB and maintains cellular redox homeostasis in microglia that limits NLRP3 inflammasome activation along with processing active caspase-1, IL-1β and IL-18. To further correlates the in vitro study with in vivo MPTP model, treatment with PA also inhibits the nuclear translocation of NF-κB and downregulates the NLRP3 inflammasome activation. PA administration upregulates various antioxidant enzymes levels and restored the level of dopamine and other neurotransmitters in the striatum of the mice brain with improved behavioural activities. Additionally, treatment with Mito-TEMPO (a mitochondrial ROS inhibitor) was also seen to inhibit NLRP3 inflammasome and rescue dopaminergic neuron loss in the mice brain. Therefore, we conclude that NLRP3 inflammasome activation requires a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting NLRP3 inflammasome pathway in Parkinson’s disease.


2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Shuhang Li ◽  
Linlin Wang ◽  
Zhihao Xu ◽  
Yuanyuan Huang ◽  
Rufeng Xue ◽  
...  

Activation of NLRP3 inflammasome is precisely controlled to avoid excessive activation. Although multiple molecules regulating NLRP3 inflammasome activation have been revealed, the checkpoints governing NLRP3 inflammasome activation remain elusive. Here, we show that activation of NLRP3 inflammasome is governed by GSTO1-promoted ASC deglutathionylation in macrophages. Glutathionylation of ASC inhibits ASC oligomerization and thus represses activation of NLRP3 inflammasome in macrophages, unless GSTO1 binds ASC and deglutathionylates ASC at ER, under control of mitochondrial ROS and triacylglyceride synthesis. In macrophages expressing ASCC171A, a mutant ASC without glutathionylation site, activation of NLRP3 inflammasome is GSTO1 independent, ROS independent, and signal 2 less dependent. Moreover, AscC171A mice exhibit NLRP3-dependent hyperinflammation in vivo. Our results demonstrate that glutathionylation of ASC represses NLRP3 inflammasome activation, and GSTO1-promoted ASC deglutathionylation at ER, under metabolic control, is a checkpoint for activating NLRP3 inflammasome.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Elisa Benetti ◽  
Fausto Chiazza ◽  
Nimesh S. A. Patel ◽  
Massimo Collino

The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1βand IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Takayuki Komatsu ◽  
Yukie Tanaka ◽  
Yoshinori Kitagawa ◽  
Naoki Koide ◽  
Yoshikazu Naiki ◽  
...  

ABSTRACT Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1β (IL-1β) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1β maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(−)] induced markedly greater amounts of IL-1β than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(−)-induced IL-1β secretion, indicating an essential role for NLRP3 in SeV V(−)-induced IL-1β activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1β secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1β activation. IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


Sign in / Sign up

Export Citation Format

Share Document