scholarly journals Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway

2020 ◽  
Vol 217 (5) ◽  
Author(s):  
Heeseog Kang ◽  
Smita Jha ◽  
Aleksandra Ivovic ◽  
Nadja Fratzl-Zelman ◽  
Zuoming Deng ◽  
...  

Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical “dripping candle wax” melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-β pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation–positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-β pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-β/SMAD3 activation by BMP signaling in SMAD3 mutation–positive endosteal melorheostosis, which may guide future therapies.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 483-483
Author(s):  
Sarah Gooding ◽  
Siobhan Webb ◽  
Sam Olechnowicz ◽  
Seint Lwin ◽  
Andrew Armitage ◽  
...  

Abstract In phases of myeloma dormancy such as MGUS (monoclonal gammopathy of uncertain significance) or post chemotherapy remission, certain characteristics of the bone marrow niche promote quiescence of the tumor. Myeloma cell dormancy has been proposed to be induced by contact with 'bone-lining' endosteal niche cells, which are destroyed by active disease. Preservation of dormancy could prevent disease relapse or MGUS progression to myeloma, however the molecular mechanisms and signaling pathways that maintain this bone-lining niche are unknown. We addressed this in vivo by sorting endosteal niche components (osteoblasts, mesenchymal stem cells (MSCs), endothelial cells and tumor) from myeloma-bearing and control mice, followed by RNA-Seq transcriptome profiling and gene set enrichment analysis (GSEA). Endosteal MSCs showed greatest transcriptome differences between myeloma-bearing and control groups. MSCs from myeloma-bearing mice showed positive enrichment (p = 0.004) for a 200-gene bone remodeling gene set. The leading edge (highest contributors to enrichment) of this gene set contained 24% BMP pathway genes, far higher than the next nearest pathway represented (TGFb signaling and AP-1 complex, both 6.5%). Whereas various other signaling pathways identified in the leading edge are known to be of high importance in myeloma bone disease (e.g. RANKL, TGFb, Wnt, hedgehog), BMP signaling has not hitherto been reported as deregulated. To assess the role of BMP signaling in myeloma in vitro and in vivo, we used the BMP pathway inhibitor LDN-193189 (LDN), which has high affinity for type I BMP receptors Alk2, Alk3 and Alk6. In the myeloma-bearing KaLwRij/5TGM1 mouse model, LDN significantly improved trabecular (p=0.02) and cortical bone volume (p=0.004) and reduced serum TRAP levels (p=0.003). Histomorphometric analysis demonstrated that LDN reduced osteoclast numbers (p<0.0001) and increased osteoblast numbers (p=0.018) in myeloma-bearing mice. As BMPs are well known to be osteoinductive, the mechanism by which BMP inhibition might cause increased bone mass in this model was investigated. In vitro, expression of rankl was significantly decreased by LDN in osteoblasts cultured from myeloma-bearing mice (p=0.03). Transcriptome profiling of endosteal MSCs sorted from myeloma mice treated with LDN or vehicle, subjected to GSEA (MSigDB Hallmark gene set database), showed significant enrichment in gene sets representing epithelial-mesenchymal-transition (EMT) and apical junction formation with LDN use. The leading edge genes included those involved in matrix deposition and osteoblast differentiation, indicating LDN may lead to reversal of certain aspects of the osteoblast differentiation block seen in MSCs in myeloma. LDN had no effect on overall tumour burden in vivo, however altered the niche-preference (endosteal vs central marrow) of myeloma cells to favor the endosteal niche (ratio endosteal: central marrow myeloma distribution 0.23 vehicle group, 0.37 LDN group, p=0.034). LDN also significantly reduced expression in liver of the iron regulatory hormone hepcidin (p=0.0003). Increased hepcidin has been described in multiple myeloma and likely contributes to inflammatory anemia, of clinical relevance in many myeloma patients. The analysis of cell-type specific in vivo gene expression changes in the myeloma endosteal niche led to investigation of a pathway not previously recognized as deregulated in myeloma bone disease. This technique has not previously been applied to the myeloma niche or, to our knowledge, any non-myeloid tumor invading bone marrow. We demonstrate its use in highlighting type 1 BMP receptor signaling as a novel therapeutic target in myeloma bone disease. BMP inhibition enhances osteoblast differentiation and reduces osteoclast activity in this model, suggesting anabolic and anti-resorptive benefits. The resulting preservation of the endosteal niche may have potential to increase the dormant tumor fraction. In addition to amelioration of bone disease, we hypothesize other clinical benefits, including improvement of inflammatory anemia and prolongation of quiescent phases, e.g. MGUS and post-treatment remission. Disclosures Ramasamy: Celgene: Honoraria, Research Funding.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 3024-3030 ◽  
Author(s):  
Therese Standal ◽  
Niels Abildgaard ◽  
Unn-Merete Fagerli ◽  
Berit Stordal ◽  
Øyvind Hjertner ◽  
...  

AbstractThe bone disease in multiple myeloma is caused by an uncoupling of bone formation from bone resorption. A key difference between patients with and patients without osteolytic lesion is that the latter have fewer and less active osteoblasts. Hepatocyte growth factor (HGF) is often produced by myeloma cells and is found at high concentrations in the bone marrow of patients with multiple myeloma. Here we show that HGF inhibited bone morphogenetic protein (BMP)–induced in vitro osteoblastogenesis. Thus, HGF inhibited BMP-induced expression of alkaline phosphatase in human mesenchymal stem cells (hMSCs) and the murine myoid cell line C2C12, as well as mineralization by hMSCs. Furthermore, the expression of the osteoblast-specific transcription factors Runx2 and Osterix was reduced by HGF treatment. HGF promoted proliferation of hMSCs, and the BMP-induced halt in proliferation was overridden by HGF, keeping the cells in a proliferative, undifferentiating state. BMP-induced nuclear translocation of receptor-activated Smads was inhibited by HGF, providing a possible explanation of how HGF inhibits BMP signaling. The in vitro data were supported by the observation of a negative correlation between HGF and a marker of osteoblast activity, bone-specific alkaline phosphatase (rho = −0.45, P = .008), in sera from 34 patients with myeloma. These observations suggest that HGF inhibits bone formation in multiple myeloma.


2014 ◽  
Vol 28 (9) ◽  
pp. 1460-1470 ◽  
Author(s):  
Shizu Hirata-Tsuchiya ◽  
Hidefumi Fukushima ◽  
Takenobu Katagiri ◽  
Satoshi Ohte ◽  
Masashi Shin ◽  
...  

Bone morphogenic proteins (BMPs) stimulate bone formation in vivo and osteoblast differentiation in vitro via a Smad signaling pathway. Recent findings revealed that the activation of nuclear factor-κB (NF-κB) inhibits BMP-induced osteoblast differentiation. Here, we show that NF-κB inhibits BMP signaling by directly targeting the Smad pathway. A selective inhibitor of the classic NF-κB pathway, BAY11–770682, enhanced BMP2-induced ectopic bone formation in vivo. In mouse embryonic fibroblasts (MEFs) prepared from mice deficient in p65, the main subunit of NF-κB, BMP2, induced osteoblastic differentiation via the Smad complex to a greater extent than that in wild-type MEFs. In p65−/− MEFs, the BMP2-activated Smad complex bound much more stably to the target element than that in wild-type MEFs without affecting the phosphorylation levels of Smad1/5/8. Overexpression of p65 inhibited BMP2 activity by decreasing the DNA binding of the Smad complex. The C-terminal region, including the TA2 domain, of p65 was essential for inhibiting the BMP-Smad pathway. The C-terminal TA2 domain of p65 associated with the MH1 domain of Smad4 but not Smad1. Taken together, our results suggest that p65 inhibits BMP signaling by blocking the DNA binding of the Smad complex via an interaction with Smad4. Our study also suggests that targeting the association between p65 and Smad4 may help to promote bone regeneration in the treatment of bone diseases.


2019 ◽  
Vol 20 (24) ◽  
pp. 6229 ◽  
Author(s):  
Dijie Li ◽  
Ye Tian ◽  
Chong Yin ◽  
Ying Huai ◽  
Yipu Zhao ◽  
...  

Osteoporosis, a disease characterized by both loss of bone mass and structural deterioration of bone, is the most common reason for a broken bone among the elderly. It is known that the attenuated differentiation ability of osteogenic cells has been regarded as one of the greatest contributors to age-related bone formation reduction. However, the effects of current therapies are still unsatisfactory. In this study we identify a novel long noncoding RNA AK045490 which is correlated with osteogenic differentiation and enriched in skeletal tissues of mice. In vitro analysis of bone-derived mesenchymal stem cells (BMSCs) showed that AK045490 inhibited osteoblast differentiation. In vivo inhibition of AK045490 by its small interfering RNA rescued bone formation in ovariectomized osteoporosis mice model. Mechanistically, AK045490 inhibited the nuclear translocation of β-catenin and downregulated the expression of TCF1, LEF1, and Runx2. The results suggest that Lnc-AK045490 suppresses β-catenin/TCF1/Runx2 signaling and inhibits osteoblast differentiation and bone formation, providing a novel mechanism of osteogenic differentiation and a potential drug target for osteoporosis.


2018 ◽  
Vol 11 (554) ◽  
pp. eaar6795 ◽  
Author(s):  
Jimin Yuan ◽  
Wan Hwa Ng ◽  
Zizi Tian ◽  
Jiajun Yap ◽  
Manuela Baccarini ◽  
...  

RAS-RAF-MEK-ERK signaling has a well-defined role in cancer biology. Although aberrant pathway activation occurs mostly upstream of the kinase MEK, mutations in MEK are prevalent in some cancer subsets. Here, we found that cancer-related, activating mutations in MEK can be classified into two groups: those that relieve inhibitory interactions with the helix A region and those that are in-frame deletions of the β3-αC loop, which enhance MEK1 homodimerization. The former, helix A–associated mutants, are inhibited by traditional MEK inhibitors. However, we found that the increased homodimerization associated with the loop-deletion mutants promoted intradimer cross-phosphorylation of the activation loop and conferred differential resistance to MEK inhibitors both in vitro and in vivo. MEK1 dimerization was required both for its activation by the kinase RAF and for its catalytic activity toward the kinase ERK. Our findings not only identify a previously unknown group of MEK mutants and provide insight into some key steps in RAF-MEK-ERK activation but also have implications for the design of therapies targeting RAS-ERK signaling in cancers.


Author(s):  
Juthamas Yosudjai ◽  
Chaturong Inpad ◽  
Phattarin Pothipan ◽  
Saowaluk Saisomboon ◽  
Damrasamon Surangkul ◽  
...  

ABSTRACT The upregulation of Anterior gradient 2 (AGR2) has been observed in cholangiocarcinoma (CCA) cells, nras-mutant zebrafish and specimens derived from CCA patients. Our previous study reported AGR2 splicing into AGR2vH to facilitate CCA cell aggressiveness, while this work aims to investigate the molecular mechanisms underlying AGR2vH. Firstly, AGR2vH upregulation was demonstrated in CCA tissues derived from patients. For in vitro studies, established AGR2vH-overexpressing KKU-213A cells were found to exhibit increased proliferation and clonogenicity. In vivo tumorigenicity assessed in a mouse model represented higher tumorigenic potential in AGR2vH-overexpressing cell xenograft mice. Next, LC-MS/MS was analyzed, and indicating that AGR2vH may be associated with CCA cell proliferation via Wnt/β-catenin signaling pathway activation, which was verified by β-catenin expression and nuclear translocation. The current results provide evidence that AGR2vH upregulation promotes tumorigenicity in CCA cells linked with an alteration of CCA cell proteome.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Robyn S Allen ◽  
Benjamin Tajer ◽  
Eileen M Shore ◽  
Mary C Mullins

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disorder characterized by altered skeletal development and extraskeletal ossification. All cases of FOP are caused by activating mutations in the type I BMP/TGFβ cell surface receptor ACVR1, which over-activates signaling through phospho-Smad1/5 (pSmad1/5). To investigate the mechanism by which FOP-ACVR1 enhances pSmad1/5 activation, we used zebrafish embryonic dorsoventral (DV) patterning as an assay for BMP signaling. We determined that the FOP mutants ACVR1-R206H and -G328R do not require their ligand binding domain to over-activate BMP signaling in DV patterning. However, intact ACVR1-R206H has the ability to respond to both Bmp7 and Activin A ligands. Additionally, BMPR1, a type I BMP receptor normally required for BMP-mediated patterning of the embryo, is dispensable for both ligand-independent signaling pathway activation and ligand-responsive signaling hyperactivation by ACVR1-R206H. These results demonstrate that FOP-ACVR1 is not constrained by the same receptor/ligand partner requirements as WT-ACVR1.


2014 ◽  
Author(s):  
Barros Thamine Landim de ◽  
Antonio Chaves-Neto ◽  
Amaral Caril do ◽  
Victor Brito ◽  
Sandra Oliveira

Author(s):  
Abdulhafez A. Selim ◽  
Samir M. Abdelmagid ◽  
Reem A. Kanaan ◽  
Steven L. Smock ◽  
Thomas A. Owen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document