scholarly journals Fibrodysplasia ossificans progressiva mutant ACVR1 signals by multiple modalities in the developing zebrafish

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Robyn S Allen ◽  
Benjamin Tajer ◽  
Eileen M Shore ◽  
Mary C Mullins

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disorder characterized by altered skeletal development and extraskeletal ossification. All cases of FOP are caused by activating mutations in the type I BMP/TGFβ cell surface receptor ACVR1, which over-activates signaling through phospho-Smad1/5 (pSmad1/5). To investigate the mechanism by which FOP-ACVR1 enhances pSmad1/5 activation, we used zebrafish embryonic dorsoventral (DV) patterning as an assay for BMP signaling. We determined that the FOP mutants ACVR1-R206H and -G328R do not require their ligand binding domain to over-activate BMP signaling in DV patterning. However, intact ACVR1-R206H has the ability to respond to both Bmp7 and Activin A ligands. Additionally, BMPR1, a type I BMP receptor normally required for BMP-mediated patterning of the embryo, is dispensable for both ligand-independent signaling pathway activation and ligand-responsive signaling hyperactivation by ACVR1-R206H. These results demonstrate that FOP-ACVR1 is not constrained by the same receptor/ligand partner requirements as WT-ACVR1.

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Hui Lin ◽  
Fuli Shi ◽  
Jiayu Gao ◽  
Ping Hua

Abstract Heterotopic ossification (HO) is the aberrant formation of mature, lamellar bone in nonosseous tissue. Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disorder that causes progressive HO in the ligaments, tendons, and muscles throughout the body. FOP is attributed to an autosomal mutation in activin receptor-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor. Initial studies show that mutant ALK2 drives HO by constitutively activating the BMP signaling pathway. Recently, mutant ALK2 has been shown to transduce Smad1/5 signaling and enhance chondrogenesis, calcification in response to Activin A, which normally signals through Smad2/3 and inhibits BMP signaling pathway. Furthermore, Activin A induces heterotopic bone formation via mutant ALK2, while inhibition of Activin A blocks spontaneous and trauma-induced HO. In this manuscript, we describe the molecular mechanism of the causative gene ALK2 in FOP, mainly focusing on the prominent role of Activin A in HO. It reveals a potential strategy for prevention and treatment of FOP by inhibition of Activin A. Further studies are needed to explore the cellular and molecular mechanisms of Activin A in FOP in more detail.


2019 ◽  
Vol 30 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Julia Haupt ◽  
Alexandra Stanley ◽  
Claire M. McLeod ◽  
Brian D. Cosgrove ◽  
Andria L. Culbert ◽  
...  

An activating bone morphogenetic proteins (BMP) type I receptor ACVR1 (ACVR1R206H) mutation enhances BMP pathway signaling and causes the rare genetic disorder of heterotopic (extraskeletal) bone formation fibrodysplasia ossificans progressiva. Heterotopic ossification frequently occurs following injury as cells aberrantly differentiate during tissue repair. Biomechanical signals from the tissue microenvironment and cellular responses to these physical cues, such as stiffness and rigidity, are important determinants of cell differentiation and are modulated by BMP signaling. We used an Acvr1R206H/+ mouse model of injury-induced heterotopic ossification to examine the fibroproliferative tissue preceding heterotopic bone and identified pathologic stiffening at this stage of repair. In response to microenvironment stiffness, in vitro assays showed that Acvr1R206H/+ cells inappropriately sense their environment, responding to soft substrates with a spread morphology similar to wild-type cells on stiff substrates and to cells undergoing osteoblastogenesis. Increased activation of RhoA and its downstream effectors demonstrated increased mechanosignaling. Nuclear localization of the pro-osteoblastic factor RUNX2 on soft and stiff substrates suggests a predisposition to this cell fate. Our data support that increased BMP signaling in Acvr1R206H/+ cells alters the tissue microenvironment and results in misinterpretation of the tissue microenvironment through altered sensitivity to mechanical stimuli that lowers the threshold for commitment to chondro/osteogenic lineages.


2021 ◽  
Author(s):  
Senem Aykul ◽  
Lily Huang ◽  
Lili Wang ◽  
Nanditha Das ◽  
Sandra Reisman ◽  
...  

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by amino acid-altering mutations in ACVR1, a type I BMP receptor. The mutations occur in the region encoding the intracellular domain of ACVR1 and bestow FOP-mutant ACVR1 with the neofuction of recognizing Activin A as an agonistic ligand. (In contrast, Activin A antagonizes BMP signaling from wild type ACVR1.) This neofuction is required for HO in FOP as inhibition of Activin A stops the initiation and progression of heterotopic bone lesions in FOP. These results unequivocally demonstrated that HO in FOP is dependent on activation of FOP-mutant ACVR1 by ligand and set the stage to explore ACVR1-blocking antibodies as an additional potential therapeutic for FOP. Surprisingly, ACVR1 antibodies stimulate - rather than inhibit - HO and induce Smad1/5/8 phosphorylation of FOP-mutant ACVR1. This property is restricted to FOP-mutant ACVR1, as signaling by wild type ACVR1 is inhibited by these antibodies, as is trauma-induced HO. These results uncover yet an additional novel property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as a therapeutic strategy for FOP


2020 ◽  
Vol 217 (5) ◽  
Author(s):  
Heeseog Kang ◽  
Smita Jha ◽  
Aleksandra Ivovic ◽  
Nadja Fratzl-Zelman ◽  
Zuoming Deng ◽  
...  

Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical “dripping candle wax” melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-β pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation–positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-β pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-β/SMAD3 activation by BMP signaling in SMAD3 mutation–positive endosteal melorheostosis, which may guide future therapies.


2015 ◽  
Vol 29 (1) ◽  
pp. 140-152 ◽  
Author(s):  
Mai Fujimoto ◽  
Satoshi Ohte ◽  
Kenji Osawa ◽  
Arei Miyamoto ◽  
Sho Tsukamoto ◽  
...  

Abstract Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by progressive heterotopic ossification in soft tissues, such as the skeletal muscles. FOP has been shown to be caused by gain-of-function mutations in activin receptor-like kinase (ALK)-2, which is a type I receptor for bone morphogenetic proteins (BMPs). In the present study, we examined the molecular mechanisms that underlie the activation of intracellular signaling by mutant ALK2. Mutant ALK2 from FOP patients enhanced the activation of intracellular signaling by type II BMP receptors, such as BMPR-II and activin receptor, type II B, whereas that from heart disease patients did not. This enhancement was dependent on the kinase activity of the type II receptors. Substitution mutations at all nine serine and threonine residues in the ALK2 glycine- and serine-rich domain simultaneously inhibited this enhancement by the type II receptors. Of the nine serine and threonine residues in ALK2, T203 was found to be critical for the enhancement by type II receptors. The T203 residue was conserved in all of the BMP type I receptors, and these residues were essential for intracellular signal transduction in response to ligand stimulation. The phosphorylation levels of the mutant ALK2 related to FOP were higher than those of wild-type ALK2 and were further increased by the presence of type II receptors. The phosphorylation levels of ALK2 were greatly reduced in mutants carrying a mutation at T203, even in the presence of type II receptors. These findings suggest that the mutant ALK2 related to FOP is enhanced by BMP type II receptors via the T203-regulated phosphorylation of ALK2.


2015 ◽  
Vol 26 (17) ◽  
pp. 3117-3127 ◽  
Author(s):  
Leslie Pomeraniec ◽  
Melissa Hector-Greene ◽  
Marcelo Ehrlich ◽  
Gerard C. Blobe ◽  
Yoav I. Henis

Complex formation among transforming growth factor-β (TGF-β) receptors and its modulation by coreceptors represent an important level of regulation for TGF-β signaling. Oligomerization of ALK5 and the type II TGF-β receptor (TβRII) has been thoroughly investigated, both in vitro and in intact cells. However, such studies, especially in live cells, are missing for the endothelial cell coreceptor endoglin and for the ALK1 type I receptor, which enables endothelial cells to respond to TGF-β by activation of both Smad2/3 and Smad1/5/8. Here we combined immunoglobulin G–mediated immobilization of one cell-surface receptor with lateral mobility studies of a coexpressed receptor by fluorescence recovery after photobleaching (FRAP) to demonstrate that endoglin forms stable homodimers that function as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind to endoglin with differential dependence on TβRII, which plays a major role in recruiting ALK5 to the complex. Signaling data indicate a role for the quaternary receptor complex in regulating the balance between TGF-β signaling to Smad1/5/8 and to Smad2/3.


1999 ◽  
Vol 10 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Francis J. Eng ◽  
Oleg Varlamov ◽  
Lloyd D. Fricker

Gp180, a duck protein that was proposed to be a cell surface receptor for duck hepatitis B virus, is the homolog of metallocarboxypeptidase D, a mammalian protein thought to function in the trans-Golgi network (TGN) in the processing of proteins that transit the secretory pathway. Both gp180 and mammalian metallocarboxypeptidase D are type I integral membrane proteins that contain a 58-residue cytosolic C-terminal tail that is highly conserved between duck and rat. To investigate the regions of the gp180 tail involved with TGN retention and intracellular trafficking, gp180 and various deletion and point mutations were expressed in the AtT-20 mouse pituitary corticotroph cell line. Full length gp180 is enriched in the TGN and also cycles to the cell surface. Truncation of the C-terminal 56 residues of the cytosolic tail eliminates the enrichment in the TGN and the retrieval from the cell surface. Truncation of 12–43 residues of the tail reduced retention in the TGN and greatly accelerated the turnover of the protein. In contrast, deletion of the C-terminal 45 residues, which truncates a potential YxxL-like sequence (FxxL), reduced the protein turnover and caused accumulation of the protein on the cell surface. A point mutation of the FxxL sequence to AxxL slowed internalization, showing that this element is important for retrieval from the cell surface. Mutation of a pair of casein kinase II sites within an acidic cluster showed that they are also important for trafficking. The present study demonstrates that multiple sequence elements within the cytoplasmic tail of gp180 participate in TGN localization.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1366 ◽  
Author(s):  
Valer ◽  
Sánchez-de-Diego ◽  
Pimenta-Lopes ◽  
Rosa ◽  
Ventura

Activin A receptor type I (ACVR1) encodes for a bone morphogenetic protein type I receptor of the TGFβ receptor superfamily. It is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation. Moreover, ACVR1 has been extensively studied for its causal role in fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterised by progressive heterotopic ossification. ACVR1 is linked to different pathologies, including cardiac malformations and alterations in the reproductive system. More recently, ACVR1 has been experimentally validated as a cancer driver gene in diffuse intrinsic pontine glioma (DIPG), a malignant childhood brainstem glioma, and its function is being studied in other cancer types. Here, we review ACVR1 receptor function and signalling in physiological and pathological processes and its regulation according to cell type and mutational status. Learning from different functions and alterations linked to ACVR1 is a key step in the development of interdisciplinary research towards the identification of novel treatments for these pathologies.


1987 ◽  
Vol 104 (3) ◽  
pp. 585-593 ◽  
Author(s):  
S Dedhar ◽  
E Ruoslahti ◽  
M D Pierschbacher

To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex.


Sign in / Sign up

Export Citation Format

Share Document