scholarly journals Arkaitz Carracedo: If the scientific question is good, the result will be interesting

2019 ◽  
Vol 216 (11) ◽  
pp. 2449-2450
Author(s):  
Stephanie Houston

Arkaitz Carracedo is a principal investigator at the Association for Cooperative Research in Biosciences (CIC bioGUNE) in Spain; his laboratory focuses on signaling and metabolic alterations in cancer. Arkaitz has investigated the regulation of fatty acid oxidation in cancer cells and how these changes could be manipulated therapeutically. We chatted with Arkaitz to find out about his career in science so far.

Neoplasia ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 713-720 ◽  
Author(s):  
Harri M. Itkonen ◽  
Ninu Poulose ◽  
Suzanne Walker ◽  
Ian G. Mills

2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Roselle Gélinas ◽  
Bertrand Bouchard ◽  
Janie McDuff ◽  
Guy Charron ◽  
Christine Des Rosiers

2020 ◽  
Vol 27 (24) ◽  
pp. 3984-4001 ◽  
Author(s):  
Camille Attané ◽  
Delphine Milhas ◽  
Andrew J. Hoy ◽  
Catherine Muller

Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.


2020 ◽  
Vol 3 (7) ◽  
pp. e202000683 ◽  
Author(s):  
Ji Hye Yang ◽  
Nam Hee Kim ◽  
Jun Seop Yun ◽  
Eunae Sandra Cho ◽  
Yong Hoon Cha ◽  
...  

Despite the importance of mitochondrial fatty acid oxidation (FAO) in cancer metabolism, the biological mechanisms responsible for the FAO in cancer and therapeutic intervention based on catabolic metabolism are not well defined. In this study, we observe that Snail (SNAI1), a key transcriptional repressor of epithelial–mesenchymal transition, enhances catabolic FAO, allowing pro-survival of breast cancer cells in a starved environment. Mechanistically, Snail suppresses mitochondrial ACC2 (ACACB) by binding to a series of E-boxes located in its proximal promoter, resulting in decreased malonyl-CoA level. Malonyl-CoA being a well-known endogenous inhibitor of fatty acid transporter carnitine palmitoyltransferase 1 (CPT1), the suppression of ACC2 by Snail activates CPT1-dependent FAO, generating ATP and decreasing NADPH consumption. Importantly, combinatorial pharmacologic inhibition of pentose phosphate pathway and FAO with clinically available drugs efficiently reverts Snail-mediated metabolic reprogramming and suppresses in vivo metastatic progression of breast cancer cells. Our observations provide not only a mechanistic link between epithelial–mesenchymal transition and catabolic rewiring but also a novel catabolism-based therapeutic approach for inhibition of cancer progression.


2020 ◽  
Author(s):  
Riley A. Hampsch ◽  
Jason D. Wells ◽  
Nicole A. Traphagen ◽  
Charlotte F. McCleery ◽  
Jennifer L. Fields ◽  
...  

AbstractPurposeDespite adjuvant anti-estrogen therapy for patients with estrogen receptor alpha (ER)-positive breast cancer, dormant residual disease can persist for years and eventually cause tumor recurrence. We sought to deduce mechanisms underlying the persistence of dormant cancer cells to identify therapeutic strategies.Experimental DesignMimicking the aromatase inhibitor-induced depletion of estrogen levels used to treat patients, we developed preclinical models of dormancy in ER+ breast cancer induced by estrogen withdrawal in mice. We analyzed tumor xenografts and cultured cancer cells for molecular and cellular responses to estrogen withdrawal and drug treatments. Publicly available clinical breast tumor gene expression datasets were analyzed for responses to neoadjuvant anti-estrogen therapy.ResultsDormant breast cancer cells exhibited upregulated 5’ adenosine monophosphate-activated protein kinase (AMPK) levels and activity, and upregulated fatty acid oxidation. While the anti-diabetes AMPK-activating drug metformin slowed the estrogen-driven growth of cells and tumors, metformin promoted the persistence of estrogen-deprived cells and tumors through increased mitochondrial respiration driven by fatty acid oxidation. Pharmacologic or genetic inhibition of AMPK or fatty acid oxidation promoted clearance of dormant residual disease, while dietary fat increased tumor cell survival.ConclusionsAMPK has context-dependent effects in cancer, cautioning against the widespread use of an AMPK activator across disease settings. The development of therapeutics targeting fat metabolism is warranted in ER+ breast cancer.Statement of Translational RelevanceDormant cancer cells that survive adjuvant therapy can ultimately give rise to recurrent/advanced tumors that frequently develop resistance to all approved therapies. Patients with early-stage estrogen receptor alpha (ER)-positive breast cancer are typically treated with surgical resection followed by ≥5 years of adjuvant anti-estrogen therapy that neutralizes ER and suppresses, but often does not eliminate, tumor-initiating cells. Estrogen withdrawal, which mimics aromatase inhibitor therapy, induced activation of the metabolic sensor 5’ adenosine monophosphate-activated protein kinase (AMPK) and upregulated fatty acid oxidation (FAO) in preclinical models. Treatment with the anti-diabetes AMPK-activating drug metformin or high dietary fat intake promoted survival of dormant ER+ breast cancer cells, while anti-anginal drugs that inhibit FAO induced clearance of dormant tumor cells. These findings caution against using AMPK modulators with anti-estrogens in patients with ER+ breast cancer, and warrant testing of FAO inhibitors as anti-cancer agents in combination with anti-estrogens.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1631-1631
Author(s):  
Ismael J. Samudio ◽  
Michael Fiegl ◽  
Marina Konopleva ◽  
Kumar Kaluarachchi ◽  
John S. McMurray ◽  
...  

Abstract More than half a century ago, Otto Warburg proposed that the origin of cancer cells was closely linked to a permanent respiratory defect that bypassed the Pasteur effect, i.e. the inhibition of anaerobic fermentation by oxygen. However, permanent and transmissible defects in the respiratory capacity of cancer cells that could broadly support Warburg’s hypothesis have not been identified. Notably, we have recently demonstrated that mitochondrial uncoupling – the abrogation of ATP synthesis in response to mitochondrial membrane potential – can promote the Warburg effect in leukemia cells, and may contribute to chemoresistance, via in part, the expression of the highly conserved thermogenic protein UCP2. Here we demonstrate that mitochondrial uncoupling in leukemia cells is supported by the oxidation of fatty acids, and provide evidence that etomoxir (EX) or ranolazine (RAN), pharmacological inhibitors of fatty acid oxidation utilized for the treatment of heart failure, sensitize leukemia cell lines and primary samples to apoptosis induced by the BH3 mimetic ABT-737 and the MDM-2 inhibitor Nutlin 3a. EX and RAN, but not 2-deoxyglucose (2DG), markedly inhibited oxygen consumption in leukemia cell lines and primary samples. In contrast, 2DG, but not EX or RAN, potently depleted ATP levels, suggesting that the oxidation of fatty acids is uncoupled from ATP synthesis – and conversely, the synthesis of ATP primarily depends on the non-oxidative, glycolytic metabolism of glucose. It is noteworthy that albeit EX and RAN inhibited the growth of p53-wild type and -mutant leukemia cells, neither agent induced marked apoptosis. Nonetheless, a pronounced induction of the proapoptotic BH3-only proteins Noxa and Bim was observed regardless of p53 status, suggesting a potential mechanism by which these agents enhance apoptosis by ABT-737. In addition, EX and RAN abrogated the chemoprotective effects of bone marrow-derived stromal feeder layers, and EX provided a survival advantage in combination with ABT-737 in a murine model of leukemia suggesting that inhibition of mitochondrial fatty acid oxidation represents a novel therapeutic strategy for the treatment of leukemia. Intriguingly, C13-NMR analysis, H3–oleate oxidation, and oxymetry experiments revealed that leukemia cells do not oxidize exogenous fatty acids, but rather depend on glucose and glutamine-supported de novo synthesis of fatty acids to maintain mitochondrial function. Accordingly, depletion of glutamine, inhibition of fatty acid synthesis, or reduced pentose phosphate shunt-derived NADPH significantly decreased oxygen consumption and potentiated ABT-737 induced apoptosis. The above results support the hypothesis that glutamine and glucose-dependent anaplerotic reactions sustain fatty acid metabolism and survival of leukemia cells. Our results suggest that the dependence of cancer cells on glycolysis for energy generation indicates a metabolic shift to the ATP-uncoupled oxidation of non-glucose substrates, and most importantly, support the clinical investigation of fatty acid oxidation and synthesis inhibitors as a therapeutic strategy in hematological malignancies.


Sign in / Sign up

Export Citation Format

Share Document