scholarly journals LACC1 deficiency links juvenile arthritis with autophagy and metabolism in macrophages

2021 ◽  
Vol 218 (3) ◽  
Author(s):  
Ommar Omarjee ◽  
Anne-Laure Mathieu ◽  
Gaëlle Quiniou ◽  
Marion Moreews ◽  
Michelle Ainouze ◽  
...  

Juvenile idiopathic arthritis is the most common chronic rheumatic disease in children, and its etiology remains poorly understood. Here, we explored four families with early-onset arthritis carrying homozygous loss-of-expression mutations in LACC1. To understand the link between LACC1 and inflammation, we performed a functional study of LACC1 in human immune cells. We showed that LACC1 was primarily expressed in macrophages upon mTOR signaling. We found that LACC1 deficiency had no obvious impact on inflammasome activation, type I interferon response, or NF-κB regulation. Using bimolecular fluorescence complementation and biochemical assays, we showed that autophagy-inducing proteins, RACK1 and AMPK, interacted with LACC1. Autophagy blockade in macrophages was associated with LACC1 cleavage and degradation. Moreover, LACC1 deficiency reduced autophagy flux in primary macrophages. This was associated with a defect in the accumulation of lipid droplets and mitochondrial respiration, suggesting that LACC1-dependent autophagy fuels macrophage bioenergetics metabolism. Altogether, LACC1 deficiency defines a novel form of genetically inherited juvenile arthritis associated with impaired autophagy in macrophages.

Author(s):  
Yu Guo ◽  
Rudi Mao ◽  
Qingqing Xie ◽  
Xiaojie Cheng ◽  
Tao Xu ◽  
...  

Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc–/– mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3075-3075 ◽  
Author(s):  
Amy F McLemore ◽  
Kathy L McGraw ◽  
Hsin-An Hou ◽  
Grace A Ward ◽  
Alexis H Onimus ◽  
...  

Abstract Background: The pathogenesis of Myelodysplastic Syndromes (MDS) is linked to constitutive innate immune stimulation that converges upon the NLRP3 inflammasome to induce pyroptosis, a caspase-1 dependent cell death. We have shown that inflammasome assembly is initiated by both cell-extrinsic stimuli such as S100A9 elaborated by Myeloid-Derived Suppressor Cells (MDSC), as well as cell-intrinsic somatic gene mutations (SGM) (Basiorka A, et. al. Blood 2016). SGM of varied classes evoke replication stress caused by transcriptional pauses that can expose genomic DNA to cytosolic sensors through unresolved R-loops or micronuclei formation. The cGMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) is a cell-intrinsic DNA surveillance pathway recognizing both cytosolic pathogenic and autologous DNA, leading to interferon stimulated gene (ISG) transcription and NLRP3 inflammasome activation, key biological features of MDS (Pellagatti A, et. al. Blood 2006; 108:337.). Here, we investigate the contribution of genomic cytosolic DNA engagement by cGAS-STING to NLRP3 inflammasome activation in MDS. Methods: MDS patient and healthy donor bone marrow mononuclear cells (BMMC) were isolated by Ficoll®-Hipaque method from consented participants at the Moffitt Cancer Center or the National Taiwan University Hospital (NTUH). Immortalized murine C57BL/6 Tet2-/- and MX1Cre/SRSF2P95H as well as respective wild type (WT) control BMMCs were used as MDS SGM models. Results: We first assessed cGAS-STING activation in MDS BMMC by measuring ISG response by microarray, demonstrating profoundly increased expression of ISG15, CXCL10, Samd9l, and Ifi27l2 in MDS BMMC (n=213) compared to healthy control BMMC (n=20) (p<0.0001, p=0.013, p=0.0007 and p<0.0001, respectively). Likewise, both the Tet2 and SRSF2 SGM models have increased ISG expression compared to WT. Importantly, treatment with the cGAS inhibitor, RU.521 (0.1-1µM, 24 hours), significantly suppressed ISG expression in the SGM models. Further, we confirmed DNA sensor pathway activation in the SRSF2 SGM model by demonstrating upregulated phosphorylation of the interferon-regulatory factor (IRF)3 and IRF7 transcription factors compared to WT controls, and treatment with RU.521 decreased IRF3 phosphorylation. Caspase-1 cleavage in Tet2 and SRSF2 SGM models confirmed NLRP3 inflammasome activation in mutant cells compared to WT controls, and RU.521 treatment decreased active caspase-1 generation in both SGM models. RU.521 treatment of MDS BMMC harboring DNMT3 and Tet2 mutations induced terminal differentiation as evidenced by increased CD11b expression detected by flow cytometry and morphological assessment of Wright-Giemsa stains. Similarly, treatment with RU.521 promoted cytological differentiation in the Tet2 SGM model. We next investigated cytosolic genomic-DNA sources including micronuclei and unresolved DNA:RNA hybrids (R-loops) in the SGM models and primary MDS BMMC. Using immunofluorescence (IF), we found a significantly increased number of micronuclei in MDS BMMC (n=8) compared to controls (n=4), p=0.0248. Additionally, R-loops were increased in MDS primary BMMC (n=5) harboring varied SGM classes vs. controls (n=5) as well as in the SGM models. Finally, to confirm genomic-DNA engagement by cGAS, we used IF to assess cGAS co-localization. cGAS co-localized with micronuclei at sites of envelope collapse as well as with R-loops in MDS BMMC, thereby demonstrating cGAS/STING engagement of cytosolic self-DNA (n=4, each). Conclusion: These data indicate that cGAS-STING engages redundant sources of cytosolic genomic-DNA in MDS to initiate a Type I interferon response and NLRP3 inflammasome activation. Inhibition of the cGAS-STING axis may represent a novel therapeutic strategy for investigation in MDS. Disclosures List: Celgene: Research Funding.


2008 ◽  
Vol 31 (4) ◽  
pp. 13
Author(s):  
Martin Hyrcza ◽  
Mario Ostrowski ◽  
Sandy Der

Plasmacytoid dendritic cells (pDCs) are innate immune cells able to produce large quantities of type I interferons (IFN) when activated. Human immunodeficiency virus (HIV)-infected patients show generalized immune dysfunction characterized in part by chronic interferon response. In this study we investigated the role of dendritic cells inactivating and maintaining this response. Specifically we compared the IFN geneactivity in pDCs in response to several viruses and TLR agonists. We hypothesized that 1) the pattern of IFN gene transcription would differ in pDCs treated with HIV than with other agents, and 2) that pDCs from patients from different stages of disease would respond differently to the stimulations. To test these hypotheses, we obtained pDCs from 15 HIV-infected and uninfected individuals and treated freshly isolated pDCs with either HIV (BAL strain), influenza virus (A/PR/8/34), Sendai virus (Cantell strain), TLR7 agonist(imiquimod), or TLR9 agonist (CpG-ODN) for 6h. Type I IFN gene transcription was monitored by real time qPCRfor IFNA1, A2, A5, A6, A8,A17, B1, and E1, and cytokine levels were assayed by Cytometric Bead Arrays forTNF?, IL6, IL8, IL10, IL1?, and IL12p70. pDC function as determined by these two assays showed no difference between HIV-infected and uninfected patients or between patients with early or chronic infection. Specifically, HIV did notinduce type I IFN gene expression, whereas influenza virus, Sendai virus and imiquimod did. Similarly, HIV failed to induce any cytokine release from pDCs in contrast to influenza virus, Sendai virus and imiquimod, which stimulatedrelease of TNF?, IL6, or IL8. Together these results suggest that the reaction of pDCs to HIV virus is quantitatively different from the response to agents such as virus, Sendai virus, and imiquimod. In addition, pDCs from HIV-infected persons have responses similar to pDCs from uninfected donors, suggesting, that the DC function may not be affected by HIV infection.


Author(s):  
Lai Wei ◽  
Siqi Ming ◽  
Bin Zou ◽  
Yongjian Wu ◽  
Zhongsi Hong ◽  
...  

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Zongyi Bo ◽  
Yurun Miao ◽  
Rui Xi ◽  
Qiuping Zhong ◽  
Chenyi Bao ◽  
...  

Abstract Cyclic GMP-AMP (cGAMP) synthase (cGAS) is an intracellular sensor of cytoplasmic viral DNA created during virus infection, which subsequently activates the stimulator of interferon gene (STING)-dependent type I interferon response to eliminate pathogens. In contrast, viruses have developed different strategies to modulate this signalling pathway. Pseudorabies virus (PRV), an alphaherpesvirus, is the causative agent of Aujeszky’s disease (AD), a notable disease that causes substantial economic loss to the swine industry globally. Previous reports have shown that PRV infection induces cGAS-dependent IFN-β production, conversely hydrolysing cGAMP, a second messenger synthesized by cGAS, and attenuates PRV-induced IRF3 activation and IFN-β secretion. However, it is not clear whether PRV open reading frames (ORFs) modulate the cGAS–STING-IRF3 pathway. Here, 50 PRV ORFs were screened, showing that PRV UL13 serine/threonine kinase blocks the cGAS–STING-IRF3-, poly(I:C)- or VSV-mediated transcriptional activation of the IFN-β gene. Importantly, it was discovered that UL13 phosphorylates IRF3, and its kinase activity is indispensable for such an inhibitory effect. Moreover, UL13 does not affect IRF3 dimerization, nuclear translocation or association with CREB-binding protein (CBP) but attenuates the binding of IRF3 to the IRF3-responsive promoter. Consistent with this, it was discovered that UL13 inhibits the expression of multiple interferon-stimulated genes (ISGs) induced by cGAS–STING or poly(I:C). Finally, it was determined that PRV infection can activate IRF3 by recruiting it to the nucleus, and PRVΔUL13 mutants enhance the transactivation level of the IFN-β gene. Taken together, the data from the present study demonstrated that PRV UL13 inhibits cGAS–STING-mediated IFN-β production by phosphorylating IRF3.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elena N. Judd ◽  
Alison R. Gilchrist ◽  
Nicholas R. Meyerson ◽  
Sara L. Sawyer

Abstract Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one. Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.


Sign in / Sign up

Export Citation Format

Share Document