scholarly journals STUDIES IN RODENT POLIOMYELITIS

1942 ◽  
Vol 76 (1) ◽  
pp. 31-51 ◽  
Author(s):  
Claus W. Jungeblut ◽  
Rose R. Feiner ◽  
Murray Sanders

1. Murine SK poliomyelitis virus has been transferred from mouse to guinea pig with the establishment of a fixed strain of cavian passage virus. 2. The disease thus produced in guinea pigs is characterized by the occurrence of flaccid paralysis. Typical poliomyelitic lesions are found in the anterior horn of the spinal cord. 3. Guinea pigs are susceptible to infection with murine virus by the intracerebral, intravenous, intraperitoneal, and subcutaneous route; cavian passage virus produces paralysis only upon intracerebral or intravenous injection. Neither virus paralyzes guinea pigs by feeding or nasal instillation. 4. The potency of the virus (murine or cavian) in guinea pigs is considerably lower than in mice and compares with the titer of the original SK strain in monkeys. In paralyzed guinea pigs the virus is found only in the central nervous system and not in extraneural sites, such as blood or abdominal viscera. 5. Attempts to cultivate cavian passage virus in tissue culture have yielded evidence of some in vitro propagation but no passage virus has as yet been obtained by this method. 6. Cross neutralization tests with cavian passage virus in guinea pigs and with murine virus in mice have established the serological identity of the two viruses. Inactivation of cavian passage virus in guinea pigs by poliomyelitis-convalescent monkey sera is irregular. Complete neutralization has been obtained with a concentrated poliomyelitis horse serum. 7. Resistance to reinfection with potent virus can be demonstrated in convalescent guinea pigs as well as in guinea pigs which have survived a symptomless infection with either murine or cavian virus. This immunity is demonstrable by the power of the serum of such animals to neutralize the virus in vitro and by the ability of nerve tissue to dispose in vivo of the infectious agent. 8. Cavian passage virus has a limited pathogenicity for rhesus monkeys. Of a total of 35 monkeys injected intracerebrally with guinea pig passage virus 26 failed to respond with any manifest symptoms of disease; 8 monkeys showed various signs of definite involvement of the central nervous system consisting of tremor, convulsions, facial palsy, and localized pareses; 1 monkey developed typical flaccid paralysis. 9. Following injection with cavian virus the virus may be recovered from the tissues of normal monkeys but not from the tissues of convalescent monkeys shortly after a paralyzing attack of poliomyelitis due to SK or Aycock virus. 10. Immunization of monkeys with early cavian passage virus by the subcutaneous route has given no clear-cut evidence of protection against intracerebral reinfection with SK poliomyelitis virus. Neither has there been any evidence of effective interference in monkeys injected intravenously with early cavian passage virus and intracerebrally with RMV poliomyelitis virus. 11. The bearing of the experimental data upon the epidemiology of the human disease is discussed.

Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


2021 ◽  
Vol 22 (4) ◽  
pp. 1725
Author(s):  
Diego Delgado ◽  
Ane Miren Bilbao ◽  
Maider Beitia ◽  
Ane Garate ◽  
Pello Sánchez ◽  
...  

Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor’s health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65–85 and 20–25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 848
Author(s):  
Luisa Stella Dolci ◽  
Rosaria Carmela Perone ◽  
Roberto Di Gesù ◽  
Mallesh Kurakula ◽  
Chiara Gualandi ◽  
...  

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95–1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells—OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.


Neuroscience ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 1-5 ◽  
Author(s):  
N. Vibert ◽  
A. Bantikyan ◽  
A. Babalian ◽  
M. Serafin ◽  
M. Mühlethaler ◽  
...  

In the study of the phenomena of anaphylaxis there are certain points on which some measure of agreement seems to have been attained. In the case of anaphylaxis to soluble proteins, with which alone we are directly concerned in this paper, the majority of investigators probably accept the view that the condition is due to the formation of an antibody of the precipitin type. Concerning the method, however, by which the presence of this antibody causes the specific sensitiveness, the means by which its interaction with the antibody produces the anaphylactic shock, there is a wide divergence of conception. Two main currents of speculation can be discerned. One view, historically rather the earlier, and first put forward by Besredka (1) attributes the anaphylactic condition to the location of the antibody in the body cells. There is not complete unanimity among adherents of this view as to the nature of the antibody concerned, or as to the class of cells containing it which are primarily affected in the anaphylactic shock. Besredka (2) himself has apparently not accepted the identification of the anaphylactic antibody with a precipitin, but regards it as belonging to a special class (sensibilisine). He also regards the cells of the central nervous system as those primarily involved in the anaphylactic shock in the guinea-pig. Others, including one of us (3), have found no adequate reason for rejecting the strong evidence in favour of the precipitin nature of the anaphylactic antibody, produced by Doerr and Russ (4), Weil (5), and others, and have accepted and confirmed the description of the rapid anaphylactic death in the guinea-pig as due to a direct stimulation of the plain-muscle fibres surrounding the bronchioles, causing valve-like obstruction of the lumen, and leading to asphyxia, with the characteristic fixed distension of the lungs, as first described by Auer and Lewis (6), and almost simultaneously by Biedl and Kraus (7). But the fundamental conception of anaphylaxis as due to cellular location of an antibody, and of the reaction as due to the union of antigen and antibody taking place in the protoplasm, is common to a number of workers who thus differ on details.


2021 ◽  
Author(s):  
Bashaer Abu Khatir ◽  
Gordon Omar Davis ◽  
Mariam Sameem ◽  
Rutu Patel ◽  
Jackie Fong ◽  
...  

Tuberin is a member of a large protein complex, Tuberous Sclerosis Complex, and acts as a sensor for nutrient status regulating protein synthesis and cell cycle progression. Mutations in the Tuberin gene, TSC2, lead to the formation of tumors and developmental defects in many organ systems, including the central nervous system. Tuberin is expressed in the brain throughout development and levels of Tuberin have been found to decrease during neuronal differentiation in cell lines in vitro. Our current work investigates the levels of Tuberin at two stages of embryonic development in vivo, and we study the mRNA and protein levels during a time course using immortalized cell lines in vitro. Our results show that Tuberin levels remain stable in the olfactory bulb but decrease in the Purkinje cell layer during embryonic mouse brain development. We show here that Tuberin levels are higher when cells are cultured as neurospheres, and knockdown of Tuberin results in a reduction in the number of neurospheres. These data provide support for the hypothesis that Tuberin is an important regulator of stemness and the reduction of Tuberin levels might support functional differentiation in the central nervous system. Understanding how Tuberin expression is regulated throughout neural development is essential to fully comprehend the role of this protein in several developmental and neural pathologies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Davide Marangon ◽  
Nicolò Caporale ◽  
Marta Boccazzi ◽  
Maria P. Abbracchio ◽  
Giuseppe Testa ◽  
...  

Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells (OPCs). In the last 20 years, the biology of OPCs and their behavior under pathological conditions have been studied through several experimental models. When co-cultured with neurons, OPCs undergo terminal maturation and produce myelin tracts around axons, allowing to investigate myelination in response to exogenous stimuli in a very simple in vitro system. On the other hand, in vivo models more closely reproducing some of the features of human pathophysiology enabled to assess the consequences of demyelination and the molecular mechanisms of remyelination, and they are often used to validate the effect of pharmacological agents. However, they are very complex, and not suitable for large scale drug discovery screening. Recent advances in cell reprogramming, biophysics and bioengineering have allowed impressive improvements in the methodological approaches to study brain physiology and myelination. Rat and mouse OPCs can be replaced by human OPCs obtained by induced pluripotent stem cells (iPSCs) derived from healthy or diseased individuals, thus offering unprecedented possibilities for personalized disease modeling and treatment. OPCs and neural cells can be also artificially assembled, using 3D-printed culture chambers and biomaterial scaffolds, which allow modeling cell-to-cell interactions in a highly controlled manner. Interestingly, scaffold stiffness can be adopted to reproduce the mechanosensory properties assumed by tissues in physiological or pathological conditions. Moreover, the recent development of iPSC-derived 3D brain cultures, called organoids, has made it possible to study key aspects of embryonic brain development, such as neuronal differentiation, maturation and network formation in temporal dynamics that are inaccessible to traditional in vitro cultures. Despite the huge potential of organoids, their application to myelination studies is still in its infancy. In this review, we shall summarize the novel most relevant experimental approaches and their implications for the identification of remyelinating agents for human diseases such as multiple sclerosis.


Sign in / Sign up

Export Citation Format

Share Document