scholarly journals THE INTRACELLULAR GROWTH OF BACTERIOPHAGES

1952 ◽  
Vol 35 (4) ◽  
pp. 657-667 ◽  
Author(s):  
Thomas F. Anderson ◽  
A. H. Doermann

The growth of the virus T3 has been followed by breaking up the complexes it forms with host cells at various stages in their development and then assaying the debris for active virus particles. Two independent methods for breaking up cells were used: sonic vibration and lysis by the T6-cyanide method previously used for the study of the growth of T4. During the first half of the latent period both treatments, as well as cyanide alone, destroyed the capacity of the complexes for producing daughter virus particles. Furthermore, the infecting particles could not be recovered from them during the first half of the latent period. After the complexes had had 12 minutes of incubation at 30°C. both methods freed daughter virus particles from them in numbers which increased steadily with time until, near the end of the rise period, the normal burst size was reached. In general the agreement between the two yields is so good that one may conclude that both methods liberate quantitatively the mature daughter T3 particles which exist in the complexes before normal lysis occurs.

2010 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
G.A. Al-Mola, and I. H. Al-Yassari

Bacteriophage are viruses that infect bacterial cells. as with all viruses, phage are nonliving agents and thus require the use of the host‟s metabolic processes to replicate itself. in this study, the phage of interest are those that infect and lyses E. colt host cells. when phage are released from the ruptured host, distinct zones of clearing (plaques) form. the original E. colt host cells for this experiment came from a sample of raw sewage. in order to obtain the bacteriophage, a procedure of enrichment, isolation, dilution and seeding was followed, the presence of distinct plaques indicated that lytic bacteriophage had been successfully amplified, separated and grown.This study included determination of phage titre, latent period , rise period and the burst size of the phage and effect some of factor on phage titre such as (temperature, ether and chloroform) .for determination ofhage titre used series of dilutions(10-1, 10-2, 10-3, 10-4, 10-4, 10-6, 10-7, 10-8, 10-9) the dilution factor gave the best countable number of plaques is(103). this dilution factor was then used for all other experiments, the latent period , rise period and the burst size of the phage are determined by countable number of plaques and phage titre(titer: plaque-forming unit(p.f.u) during 10,20,30,40,50, and 60 minutes . it was (4.7x105 „ 5.3x105 and 6.0x105)during 1O,20and30minutes respectively in the latent period ,but it was (8.5x105 8.9x10‟ 9.3x105)during 40,50,and 60 minutes respectively in the rise period .then the burst size of the phage is counted by the ratio of the phage titer after rise period to that during the latent period it was(1.67).This study also included effect of temperature on phage titre the statistical analysis was significantly increase P<0.05 in phage titre at the temperature37 C° comparing with phage titre at the temperature 50 C° and phage titre at the temperature 65 C°. effects of ether and chloroform on number of plaques and phage titre during 5,10,15 ,20,25 ,30,35 and 40 minutes it was(0.7x105 , 0.3x105 , 0 , 0 , 0 , 0, 0 and 0) respectively in ether sensitivity, but the phage titre in chloroform sensitivity was completely inactivated by chloroform treatment, the statistical analysis (freedom degree ( 2,21 ) and F value=52.60 was high] significant increase (P<0.05) in phage titre in normal saline comparing with phage titre in ether and chloroform sensitivity


2020 ◽  
Vol 27 (1) ◽  
pp. 56-72
Author(s):  
Zeliha Yıldirim ◽  
Tuba Sakin ◽  
Mustafa Akçelik ◽  
Nefise Akçelik

The objective of this study was to identify and characterize five different lytic bacteriophages specific to Escherichia coli O157:H7. vB_EcoM-P12, vB_EcoM-P13, vB_EcoM-P23, and vB_EcoM-P34 phages belonged to the Myoviridae family and vB_EcoS-P24 phage was in the Siphoviridae family. Their plaque sizes changed between 0.48 ± 0.03 and 0.90 ± 0.03 mm in diameter. stx1 and stx2 virulent gene regions were absent in the genome of five Eco-phages and their genome size was 33 kbp. The protein band profiles of the five phages were found to be different from each other. Their latent period, burst size, and burst time changed between 10–15 min, 72–144 PFU/cell and 20–35 min, respectively. Multiplicity of infection values and mutant frequency of the phages were among 0.1–0.001 and 1.14 × 10−7–3.69 × 10−8, respectively. The phages had strong lytic activity against their host bacteria ( E. coli NCTC 12900, ATCC 43888, and ATCC 35150) at 5–37 ℃ and adsorbed to their host cells by 92.7–97.5% in the first five minutes of incubation. These phages are thought to be good candidates as therapeutic and biocontrol agents against E. coli O157:H7 in the veterinary science and food industry due to short latent period, high burst size, rapid development in host cells, high lytic activity, high adsorption rate, stability over a wide pH range and high temperature, and absence of stx1 and stx2 genes.


2004 ◽  
Vol 72 (10) ◽  
pp. 5983-5992 ◽  
Author(s):  
Jessica A. Sexton ◽  
Jennifer L. Miller ◽  
Aki Yoneda ◽  
Thomas E. Kehl-Fie ◽  
Joseph P. Vogel

ABSTRACT Legionella pneumophila utilizes a type IV secretion system (T4SS) encoded by 26 dot/icm genes to replicate inside host cells and cause disease. In contrast to all other L. pneumophila dot/icm genes, dotU and icmF have homologs in a wide variety of gram-negative bacteria, none of which possess a T4SS. Instead, dotU and icmF orthologs are linked to a locus encoding a conserved cluster of proteins designated IcmF-associated homologous proteins, which has been proposed to constitute a novel cell surface structure. We show here that dotU is partially required for L. pneumophila intracellular growth, similar to the known requirement for icmF. In addition, we show that dotU and icmF are necessary for optimal plasmid transfer and sodium sensitivity, two additional phenotypes associated with a functional Dot/Icm complex. We found that these effects are due to the destabilization of the T4SS at the transition into the stationary phase, the point at which L. pneumophila becomes virulent. Specifically, three Dot proteins (DotH, DotG, and DotF) exhibit decreased stability in a ΔdotU ΔicmF strain. Furthermore, overexpression of just one of these proteins, DotH, is sufficient to suppress the intracellular growth defect of the ΔdotU ΔicmF mutant. This suggests a model where the DotU and IcmF proteins serve to prevent DotH degradation and therefore function to stabilize the L. pneumophila T4SS. Due to their wide distribution among bacterial species and their genetic linkage to known or predicted cell surface structures, we propose that this function in complex stabilization may be broadly conserved.


1960 ◽  
Vol 111 (3) ◽  
pp. 351-368 ◽  
Author(s):  
Igor Tamm ◽  
Rostom Bablanian

Ribonuclease is a highly active inhibitor of vaccinia virus multiplication in vitro in the chorioallantoic membrane removed from embryonated chicken eggs. It is also a highly active inhibitor of pock formation by vaccinia and herpes simplex viruses on the chorioallantoic membrane in vivo. Marked inhibitory effects were obtained with 12.5 µg. of RNase. However, complete inhibition was not obtained with several hundred micrograms of the enzyme. RNase caused no inactivation of the infectivity of vaccinia virus particles but it had a marked inhibitory effect on multiplication of this virus when administered many hours after infection of host cells had occurred. RNase also failed to inactivate the infectivity of herpes simplex virus particles. The results obtained indicate that ribonucleic acid is necessary for the multiplication of two DNA-containing viruses; i.e., vaccinia and herpes simplex.


2019 ◽  
Author(s):  
Ila S. Anand ◽  
Won Young Choi ◽  
Ralph R. Isberg

SummaryLegionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonize vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilize the replication vacuole, EEA1 and Rab11FIP1 showed enhanced colocalization with the vacuole surrounding the sdhA mutant compared with the WT vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant colocalization. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilize vacuole integrity during infection.


1999 ◽  
Vol 354 (1383) ◽  
pp. 603-611 ◽  
Author(s):  
John G. Shaw

In order to establish infections, viruses must be delivered to the cells of potential hosts and must then engage in activities that enable their genomes to be expressed and replicated. With most viruses, the events that precede the onset of production of progeny virus particles are referred to as the early events and, in the case of positive–strand RNA viruses, they include the initial interaction with, and the entry of, host cells and the release (uncoating) of the genome from the virus particles. Though the early events remain one of the more poorly understood areas of plant virology, the virus with which most of the relevant research has been performed is tobacco mosaic virus (TMV). In spite of this effort, there remains much uncertainty about the form or constituent of the virus that actually enters the initially invaded cell in a plant and about the mechanism(s) that trigger the subsequent uncoating (virion disassembly) reactions. A variety of approaches have been used in attempts to determine the fate of TMV particles that are involved in the establishment of an infection and these are briefly described in this review. In some recent work, it has been proposed that the uncoating process involves the bidirectional release of coat protein subunits from the viral RNA and that these activities may be mediated by cotranslational and coreplicational disassembly mechanisms.


2005 ◽  
Vol 79 (6) ◽  
pp. 3595-3605 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.


2015 ◽  
Vol 60 (2) ◽  
pp. 1049-1057 ◽  
Author(s):  
Joanna S. Said ◽  
Edward Trybala ◽  
Staffan Görander ◽  
Maria Ekblad ◽  
Jan-Åke Liljeqvist ◽  
...  

ABSTRACTHerpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract. Here we report that the cholestanol-conjugated sulfated oligosaccharide PG545, but not several other sulfated oligosaccharides lacking this modification, exhibited virucidal activity manifested as disruption of the lipid envelope of HSV-2 particles. The significance of the virus particle-disrupting activity of PG545 was also demonstrated in experimental animals, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2. Thus, PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses.


2014 ◽  
Vol 281 (1774) ◽  
pp. 20132563 ◽  
Author(s):  
Pavitra Roychoudhury ◽  
Neelima Shrestha ◽  
Valorie R. Wiss ◽  
Stephen M. Krone

For a parasite evolving in a spatially structured environment, an evolutionarily advantageous strategy may be to reduce its transmission rate or infectivity. We demonstrate this empirically using bacteriophage (phage) from an evolution experiment where spatial structure was maintained over 550 phage generations on agar plates. We found that a single substitution in the major capsid protein led to slower adsorption of phage to host cells with no change in lysis time or burst size. Plaques formed by phage isolates containing this mutation were not only larger but also contained more phage per unit area. Using a spatially explicit, individual-based model, we showed that when there is a trade-off between adsorption and diffusion (i.e. less ‘sticky’ phage diffuse further), slow adsorption can maximize plaque size, plaque density and overall productivity. These findings suggest that less infective pathogens may have an advantage in spatially structured populations, even when well-mixed models predict that they will not.


Sign in / Sign up

Export Citation Format

Share Document