scholarly journals Effect of the Medium Dielectric Strength on the Activity of Alpha Chymotrypsin

1959 ◽  
Vol 43 (1) ◽  
pp. 127-137 ◽  
Author(s):  
M. Castañeda-Agulló ◽  
Luz M. del Castillo

The rates of hydrolysis of TrEE, TEE, and ATEE1 by α-chymotrypsin were determined in media of variable dielectric strength. Many substances which modify the dielectric constant of the medium, exert additional specific effects on the reaction rate, noticeable at more or less elevated concentrations. Notwithstanding, it is possible to differentiate the dielectric and specific effects by comparing the rates in solvents of distinct nature at relatively low concentrations. Thus, the effect of varying the dielectric strength could be studied within wider ranges (ΔD = 20 with TrEE and ca. 28 with ATEE) than in the previous study of trypsin (ΔD = 12). The dielectric effect on α-chymotrypsin is the opposite of that observed with trypsin. In both cases there is a linear relationship between the logarithm of the rate of hydrolysis and the reciprocal of the dielectric constant. The slope is negative with α-chymotrypsin and positive with trypsin. According to expressions relating the dielectric constant to the rate in non-enzymatic reactions, the behavior of α-chymotrypsin is like that of a negative ion, while trypsin behaves as a positive ion. The enzyme activity appears to depend upon the arrangement of charges in the enzyme and substrate molecules, rather than on the presence of certain atomic groupings in the substrate.

1959 ◽  
Vol 42 (3) ◽  
pp. 617-634 ◽  
Author(s):  
M. Castañeda-Agulló ◽  
Luz M. del Castillo

The use of aqueous alkali for the titration of esterolytic activity when the esters are dissolved in alcoholic solutions, results in an error due to changes in the ionization of the buffer. This is corrected by titrating with alkali in the same solvent as the substrate. Alcohols and other substances which change the dielectric strength of water modify the rate of hydrolysis of BAEE1 and TSAME by trypsin to an extent proportionate to their effect on the dielectric strength. The reaction rate increases with diminished dielectric strength and vice versa. At low concentrations of substance there seems to be no specific effect other than that derived of the variation in dielectric strength. At higher concentrations, the enzyme might be denatured. In addition, it is probable that specific effects of each substance might intervene. The Coulombic and thermic energies of activation were calculated for the two esters in various solvents. The plot of the logarithm of rate constant vs. reciprocal of dielectric constant yields a straight line with positive slope. This behavior is similar to that of a non-enzymatic positive ion-dipole reaction. Trypsin reacts like a positive ion. The possible influence of the dielectric strength on the regulation of the equilibria involved in the interconversion of the various forms of trypsin in solution (active, inactive, denatured) is discussed.


1965 ◽  
Vol 43 (8) ◽  
pp. 2222-2235 ◽  
Author(s):  
Michel Lazdunski ◽  
Jacques Brouillard ◽  
Ludovic Ouellet

The influence of dioxane and ethanol on the rate of hydrolysis of p-nitrophenyl phosphate in the presence of an intestinal alcaline phosphatase can be interpreted as a dielectric constant effect, at high substrate concentration. The dielectric constant effect is a function of the pH of the medium and is maximum around pH 9.4 at 25 °C and pH 9.0 at 15 °C. An interpretation suggesting that the change in diameter of the enzyme molecule becoming an activated complex is minimum at a pH of maximum activity is proposed. The same model can take into account the influence of the ionic strength on the same reaction.


1977 ◽  
Vol 55 (8) ◽  
pp. 1401-1408 ◽  
Author(s):  
Erwin Buncel ◽  
J. Peter Millington ◽  
James F. Wiltshire

The rate of hydrolysis of the series of alkyl chlorosulfates ROSO2Cl (R = ethyl, n-propyl, isobutyl, neopentyl) has been measured as a function of solvent composition in dioxane–water media. The solvent effect is examined from the viewpoint of dielectric constant, solvation number, and solvent ionizing power. The results point to a continuous variation of solvolytic mechanisms (from SN2, through borderline, to SN1) along the series. The correlations are also considered with respect to the 'entropy criterion' for multiple bond scission previously advanced for solvolysis of the alkyl chlorosulfates. Solute–solvent interactions are identified as a possible alternative origin of the abnormally large ΔS≠ values observed in chlorosulfate solvolysis.


1974 ◽  
Vol 31 (02) ◽  
pp. 309-318
Author(s):  
Phyllis S Roberts ◽  
Raphael M Ottenbrite ◽  
Patricia B Fleming ◽  
James Wigand

Summary1. Choline chloride, 0.1 M (in 0.25 M Tris. HCl buffer, pH 7.4 or 8.0, 37°), doubles the rate of hydrolysis of TAME by bovine thrombokinase but has no effect on the hydrolysis of this ester by either human or bovine thrombin. Only when 1.0 M or more choline chloride is present is the hydrolysis of BAME by thrombokinase or thrombin weakly inhibited. Evidence is presented that shows that these effects are due to the quaternary amine group.2. Tetramethyl ammonium bromide or chloride has about the same effects on the hydrolysis of esters by these enzymes as does choline chloride but tetra-ethyl, -n.propyl and -n.butyl ammonium bromides (0.1 M) are stronger accelerators of the thrombokinase-TAME reaction and they also accelerate, but to a lesser degree, the thrombin-TAME reaction. In addition, they inhibit the hydrolysis of BAME by both enzymes. Their effects on these reactions, however, do not follow any regular order. The tetraethyl compound is the strongest accelerator of the thrombokinase-TAME reaction but the tetra-ethyl and -butyl compounds are the strongest accelerators of the thrombin-TAME reaction. The ethyl and propyl compounds are the best (although weak) inhibitors of the thrombokinase-BAME and the propyl compound of the thrombin-BAME reactions.3. Tetra-methyl, -ethyl, -n.propyl and -n.butyl ammonium bromides (0.01 M) inhibit the clotting of fibrinogen by thrombin (bovine and human proteins) at pH 7.4, imidazole or pH 6.1, phosphate buffers and they also inhibit, but to a lesser degree, a modified one-stage prothrombin test. In all cases the inhibition increases regularly as the size of the alkyl group increases from methyl to butyl. Only the ethyl com pound (0.025 M but not 0.01 M), however, significantly inhibits the polymerization of bovine fibrin monomers. It was concluded that inhibition of the fibrinogen-thrombin and the one-stage tests by the quaternary amines is not due to any effect of the com pounds on the polymerization process but probably due to inhibition of thrombin’s action on fibrinogen by the quaternary amines.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.


1980 ◽  
Vol 45 (4) ◽  
pp. 1099-1108 ◽  
Author(s):  
Mikuláš Chavko ◽  
Michal Bartík ◽  
Evžen Kasafírek

A polarographic study of the hydrolysis of [8-lysine]vasopressin and some hormonogens of the vasopressin series with the blood serum of women in the last week of pregnancy was studied. The dependence of hydrolysis on pH (pH optimum: 7.4-7.50, substrate concentration (Km 1.2 . 10-5M), pH stability and thermal stability were determined. The rate of hydrolysis of individual vasopressin analogues decreases in the order: [8-lysine]vasopressin > Nα-glycyl-prolyl[8-lysine]-vasopressin > Nα-leucyl-[8-lysine]vasopressin > Nα-alanyl-[8-lysine]vasopressin > Nα-phenyl alanyl-[8-lysine]vasopressin > Nα-diglycyl-[8-lysine]vasopressin > Nα-prolyl-[8-lysine]vasopressin > Nα-triglycyl-[8-lysine]vasopressin > Nα-sarcosyl-glycyl-[8-lysine]vasopressin. The degree of hydrolysis gradually increases to a multiple with the length of the pregnancy in consequence of the presence of oxytocine. However, vasopressin is also hydrolysed to a small extent with the enzymes from the blood sera of non-pregnant women. Under similar analytical conditions oxytocin was not hydrolysed with the sera of non-pregnant women and therefore oxytocin is a more suitable substrate than vasopressin for polarographic determination of serum oxytocinase.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Sign in / Sign up

Export Citation Format

Share Document