scholarly journals The Regulation of Catch in Molluscan Muscle

1967 ◽  
Vol 50 (6) ◽  
pp. 157-169 ◽  
Author(s):  
Betty M. Twarog

Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++.

1968 ◽  
Vol 36 (1) ◽  
pp. 245-259 ◽  
Author(s):  
Jack Rosenbluth

Body muscle cells of the bloodworm Glycera, a polychaete annelid, were studied by electron microscopy and compared with muscle cells of the more slowly acting nematode Ascaris, which have been described previously. Both muscles are obliquely striated. The predominant type of bloodworm fiber is characterized by a prominent transversely oriented sarcoplasmic reticulum with numerous dyads at the surface of each cell. Thick myofilaments are ∼3 µ long and overlap along ∼60% of their length in extended fibers and ∼80% in shortened fibers. There is virtually no endomysium and very little intracellular skeleton, and the cells are attached by desmosomes to one another rather than to connective tissue. Dense bodies are absent from the fibers and in their place are Z lines, which are truly linear rather than planar. Scattered among the predominant fibers are others, less orderly in arrangement, in which the SR is much less prominent and in which the thick filaments are thicker and longer and overlap to an even smaller degree. It is suggested that physiological differences between bloodworm and Ascaris muscles derive from differences in the proportion of series to parallel linkages between the contractile elements, differences in the amount and disposition of the SR, and differences in the impedance to shear within the myofibrils.


1968 ◽  
Vol 37 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.


1977 ◽  
Vol 75 (2) ◽  
pp. 366-380 ◽  
Author(s):  
M M Dewey ◽  
B Walcott ◽  
D E Colflesh ◽  
H Terry ◽  
R J Levine

Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.


2005 ◽  
Vol 83 (10) ◽  
pp. 825-831 ◽  
Author(s):  
Farah Ali ◽  
Peter D Paré ◽  
Chun Y Seow

It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.Key words: contraction model, ultrastructure, length adaptation, plasticity.


1956 ◽  
Vol 2 (4) ◽  
pp. 157-162 ◽  
Author(s):  
David Spiro

1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Thomas Irving ◽  
Roger Craig ◽  
Raúl Padrón

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


2020 ◽  
Author(s):  
Laura Burbaum ◽  
Jonathan Schneider ◽  
Sarah Scholze ◽  
Ralph T Böttcher ◽  
Wolfgang Baumeister ◽  
...  

Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron to-mography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments.


Cell Calcium ◽  
1993 ◽  
Vol 14 (8) ◽  
pp. 581-589 ◽  
Author(s):  
L. Raeymaekers ◽  
J. Verbist ◽  
F. Wuytack ◽  
L. Plessers ◽  
R. Casteels

1976 ◽  
Vol 68 (3) ◽  
pp. 539-556 ◽  
Author(s):  
P Cooke

There are three classes of myofilaments in vertebrate smooth muscle fibers. The thin filaments correspond to actin and the thick filaments are identified with myosin. The third class of myofilaments (100 A diam) is distinguished from both the actin and the myosin on the basis of fine structure, solubility, and pattern of localization in the muscle fibers. Direct structural evidence is presented to show that the 100A filament constitute an integrated filamentous network with the dense bodies in the sarcoplasm, and that they are not connected to either the actin or myosin filaments. Examination of (a) isolated dense bodies, (b) series of consecutive sections through the dense bodies, and (c) redistributed dense bodies in stretched muscle fibers supports this conclusion. It follows that the 100-A filaments complexes constitute a structrally distinct filamentous network. Analysis of polyacrylamide gels after electrophoresis of cell fractions that are enriched with respect to the 100-A filaments shows the presence of a new muscle protein with a molecular weight of 55,000. This protein can form filamentous segments that closely resemble in structure the native, isolated 100-A filaments. The results indicate that the filamentous network has a structure and composition that distinguish it from the actin and myosin in vertebrate smooth muscle.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mark S. Miller ◽  
Bertrand C. W. Tanner ◽  
Lori R. Nyland ◽  
Jim O. Vigoreaux

The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.


Sign in / Sign up

Export Citation Format

Share Document