Effects of spatial confinement and layer disorder in photoluminescence of GaAs1−xBix/GaAs heterostructures

2013 ◽  
Vol 46 (6) ◽  
pp. 065306 ◽  
Author(s):  
Yu I Mazur ◽  
V G Dorogan ◽  
M Benamara ◽  
M E Ware ◽  
M Schmidbauer ◽  
...  
2019 ◽  
Author(s):  
Amalia Rapakousiou ◽  
Alejandro López-moreno ◽  
Belén Nieto-Ortega ◽  
M. Mar Bernal ◽  
Miguel A. Monclús ◽  
...  

We introduce poly(1,6-pyrene terephthalamide) polymer (PPyrTA) as an aromatic polyamide analogue of poly(p-phenylene terephthalamide) (PPTA), also known as Kevlar®. This work shows that the incorporation of polycyclic aromatic pyrene moieties improves drastically the mechanical properties of the polymeric structure, increasing elastic nanoindentation-determined modulus and hardness by factors of 1.9 and 4.3, respectively. Liquid deprotonated dispersions of PPyrTA nanofibers were used as nanoscale building block for producing large-surface, free-standing polymer macroscopic nanofilms. This 2D assembly leads to further significant improvements in reduced modulus and hardness (more than twice) compared to the starting polymer macroscale fibres, due to a better re-organizational arrangement of the PPyrTA nanofibers in the nanofilms, formed under 2D spatial confinement.


2019 ◽  
Vol 21 (4) ◽  
pp. 1872-1883 ◽  
Author(s):  
Maria Gombotz ◽  
Sarah Lunghammer ◽  
Stefan Breuer ◽  
Ilie Hanzu ◽  
Florian Preishuber-Pflügl ◽  
...  
Keyword(s):  

NMR and conductivity spectroscopy reveal 2D diffusion in both microcrystalline and nanocrystalline RbSn2F5.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2005 ◽  
Vol 122 (12) ◽  
pp. 124715 ◽  
Author(s):  
Kengo Nishio ◽  
Wataru Shinoda ◽  
Tetsuya Morishita ◽  
Masuhiro Mikami

Carbon ◽  
2018 ◽  
Vol 129 ◽  
pp. 552-563 ◽  
Author(s):  
M.O. Loeh ◽  
F. Badaczewski ◽  
M. von der Lehr ◽  
R. Ellinghaus ◽  
S. Dobrotka ◽  
...  

2011 ◽  
Vol 1305 ◽  
Author(s):  
Ikurou Umezu ◽  
Shunto Okubo ◽  
Akira Sugimura

ABSTRACTThe Si nanocrystal-films are prepared by pulsed laser ablation of Si target in a mixture of helium and hydrogen gas. The total gas pressure and hydrogen partial gas pressure were varied to control structure of nanocrystal-film. The surface of Si nanocrystallite was hydrogenated and degree of hydrogenation increased with increasing hydrogen partial gas pressure. The aggregate structure of nanocrystal-film depended on both the total gas pressure and the hydrogen partial gas pressure. The former and the latter alter spatial confinement of Si species during deposition and the surface hydrogenation of individual nanocrystal, respectively. Spatial confinement increases probability of collision between nanocrystals in the plume. While, surface hydrogenation prevents coalescence of nanocrystals. The individual or aggregated nanocrystals formed in the plume reach the substrate and the nanocrystal-film is deposited on the substrate. The non-equilibrium growth processes during pulsed laser ablation are essential for the formation of the surface structure and the subsequent nanocrystal-film growth. Our results indicate that the structure of nanocrystal-film depends on the probabilities of collision and coalescence between nanocrystals in the plume. These probabilities can be varied by controlling the total gas pressure and the hydrogen partial gas pressure.


Sign in / Sign up

Export Citation Format

Share Document