scholarly journals Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA

2014 ◽  
Vol 31 (10) ◽  
pp. 105004 ◽  
Author(s):  
A Khalaidovski ◽  
G Hofmann ◽  
D Chen ◽  
J Komma ◽  
C Schwarz ◽  
...  
Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


2019 ◽  
Vol 12 (3) ◽  
pp. 213-219
Author(s):  
E. T. Ilin ◽  
S. P. Pechenkin ◽  
A. V. Svetushkov ◽  
J. A. Kozlova

During non-heating and transition period, most of cogeneration turbines operate with a lower heat extraction section actuated only due to a number of restrictions on the maximum and minimum pressure levels in the upper and lower heat extraction sections at operation of the turbine. For turbines of model T-250/300-240, the minimum permissible level of steam pressure in the upper heat extraction section, according to manufacturer data, is set to 0.06 MPa. During the non-heating and transition period, the supply water temperature is usually set in the range of 70–75°С. In order to maintain that temperature of supply water, the steam pressure in the upper heat extraction section should be below the minimum permissible level. As a result, the turbine operates with only the low-pressure heat extraction section actuated, which ensures operation without restrictions, but with a lower efficiency. The authors have introduced a set of measures, which enable to avoid those restrictions and implement two-stage heating of supply water. In this case, on connection of the upper heating extraction section, the pressure in the same is maintained at the minimum permissible level. Heat output characteristics are provided by having some of supply water delivered bypassing the group of network heaters. This operational mode enables to increase the turbine actual heat drop, to reduce the cooling steam flow into the low-pressure section and, accordingly, into the condenser, and to reduce temperature drops in network water heaters. Results of the research of operational modes for turbines of type T-250/300-240 in the non-heating and transition period with one and two-stage heating are provided. The economic efficiency of proposed operational modes was researched, which shows the effectiveness of those modes during non-heating and transition period. The limits of the efficiency of using these modes are determined.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 654
Author(s):  
Kholoud Mohamed Elsafy ◽  
Mohamad Zaid Saghir

In the present work, an attempt is made to investigate the performance of three fluids with forced convection in a wavy channel. The fluids are water, a nanofluid of 1% TiO2 in a water solution and a hybrid fluid which consists of 1% Al2O3-Cu nanoparticles in a water solution. The wavy channel has a porous insert with a permeability of 10 PPI, 20 PPI and 40 PPI, respectively. Since Reynolds number is less than 1000, the flow is assumed laminar, Newtonian and steady state. Results revealed that wavy channel provides a better heat enhancement than a straight channel of the same dimension. Porous material increases heat extraction at the expenses of the pressure drop. The nanofluid of 1% TiO2 in water provided the highest performance evaluation criteria.


2021 ◽  
Vol 169 ◽  
pp. 738-751
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Jianfeng Li ◽  
Shuai Huang ◽  
Zhao Li ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
Quinten D. Boersma ◽  
Pierre Olivier Bruna ◽  
Stephan de Hoop ◽  
Francesco Vinci ◽  
Ali Moradi Tehrani ◽  
...  

Abstract The positive impact that natural fractures can have on geothermal heat production from low-permeability reservoirs has become increasingly recognised and proven by subsurface case studies. In this study, we assess the potential impact of natural fractures on heat extraction from the tight Lower Buntsandstein Subgroup targeted by the recently drilled NLW-GT-01 well (West Netherlands Basin (WNB)). We integrate: (1) reservoir property characterisation using petrophysical analysis and geostatistical inversion, (2) image-log and core interpretation, (3) large-scale seismic fault extraction and characterisation, (4) Discrete Fracture Network (DFN) modelling and permeability upscaling, and (5) fluid-flow and temperature modelling. First, the results of the petrophysical analysis and geostatistical inversion indicate that the Volpriehausen has almost no intrinsic porosity or permeability in the rock volume surrounding the NLW-GT-01 well. The Detfurth and Hardegsen sandstones show better reservoir properties. Second, the image-log interpretation shows predominately NW–SE-orientated fractures, which are hydraulically conductive and show log-normal and negative-power-law behaviour for their length and aperture, respectively. Third, the faults extracted from the seismic data have four different orientations: NW–SE, N–S, NE–SW and E–W, with faults in proximity to the NLW-GT-01 having a similar strike to the observed fractures. Fourth, inspection of the reservoir-scale 2D DFNs, upscaled permeability models and fluid-flow/temperature simulations indicates that these potentially open natural fractures significantly enhance the effective permeability and heat production of the normally tight reservoir volume. However, our modelling results also show that when the natural fractures are closed, production values are negligible. Furthermore, because active well tests were not performed prior to the abandonment of the Triassic formations targeted by the NLW-GT-01, no conclusive data exist on whether the observed natural fractures are connected and hydraulically conductive under subsurface conditions. Therefore, based on the presented findings and remaining uncertainties, we propose that measures which can test the potential of fracture-enhanced permeability under subsurface conditions should become standard procedure in projects targeting deep and potentially fractured geothermal reservoirs.


1979 ◽  
Author(s):  
C.W. Francis ◽  
V. J. Marder ◽  
S.E. Martin

To quantitate plasmic degradation products of crosslinked fibrin in plasma, a technique has been developed which employs heat precipitation, SDS-polyacrylamide gradient gel electrophoresis of the dissolved, reduced heat precipitate, and quantitation by densitometrie analysis of γ-γ derivatives identified in the stained get. When studied with this sensitive electrophoretic technique, plasmic digests of purified crosslinked fibrin were found to contain a heterogeneous group of γ-γ chain derivatives with molecular weights between 76,000 and 100,000 daltons. In samples of normal plasma to which digests of crosslinked fibrin had been added, this heat extraction/ge1 electrophoretic technigue allowed the detection of γ-γ derivatives with a sensitivity of 20 µg/ml. Derivatives of γ-γ chains with molecular weights of 82,000 and 86,000 daltons have been identified in the plasma of patients with DIC and during fibrinolytic therapy but were not found in normal plasma or in normal plasma treated in vitro with urokinase. This quantitative assay can be performed in 24 hours and appears to be of value in judging the efficacy of thrombolytic therapy.


Sign in / Sign up

Export Citation Format

Share Document