On the relationship between long-time correlations and replica correlations in disordered systems

1979 ◽  
Vol 12 (8) ◽  
pp. L215-L216 ◽  
Author(s):  
S F Edwards ◽  
W G Griffin
2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


This survey of research on psychology in five volumes is a part of a series undertaken by the ICSSR since 1969, which covers various disciplines under social science. Volume Five of this survey, Explorations into Psyche and Psychology: Some Emerging Perspectives, examines the future of psychology in India. For a very long time, intellectual investments in understanding mental life have led to varied formulations about mind and its functions across the word. However, a critical reflection of the state of the disciplinary affairs indicates the dominance of Euro-American theories and methods, which offer an understanding coloured by a Western world view, which fails to do justice with many non-Western cultural settings. The chapters in this volume expand the scope of psychology to encompass indigenous knowledge available in the Indian tradition and invite engaging with emancipatory concerns as well as broadening the disciplinary base. The contributors situate the difference between the Eastern and Western conceptions of the mind in the practice of psychology. They look at this discipline as shaped by and shaping between systems like yoga. They also analyse animal behaviour through the lens of psychology and bring out insights about evolution of individual and social behaviour. This volume offers critique the contemporary psychological practices in India and offers a new perspective called ‘public psychology’ to construe and analyse the relationship between psychologists and their objects of study. Finally, some paradigmatic, pedagogical, and substantive issues are highlighted to restructure the practice of psychology in the Indian setting.


2021 ◽  
Vol 11 (1) ◽  
pp. 592-605
Author(s):  
Melchior Bria ◽  
Ludfi Djakfar ◽  
Achmad Wicaksono

Abstract The impacts of work characteristics on travel mode choice behavior has been studied for a long time, focusing on the work type, income, duration, and working time. However, there are no comprehensive studies on the influence of travel behavior. Therefore, this study examines the influence of work environment as a mediator of socio-economic variables, trip characteristics, transportation infrastructure and services, the environment and choice of transportation mode on work trips. The mode of transportation consists of three variables, including public transportation (bus rapid transit and mass rapid transit), private vehicles (cars and motorbikes), and online transportation (online taxis and motorbike taxis online). Multivariate analysis using the partial least squares-structural equation modeling method was used to explain the relationship between variables in the model. According to the results, the mediating impact of work environment is significant on transportation choices only for environmental variables. The mediating mode choice effect is negative for public transportation and complimentary for private vehicles and online transportation. Other variables directly affect mode choice, including the influence of work environment.


2020 ◽  
Vol 117 (10) ◽  
pp. 5250-5259 ◽  
Author(s):  
José Manuel Aburto ◽  
Francisco Villavicencio ◽  
Ugofilippo Basellini ◽  
Søren Kjærgaard ◽  
James W. Vaupel

As people live longer, ages at death are becoming more similar. This dual advance over the last two centuries, a central aim of public health policies, is a major achievement of modern civilization. Some recent exceptions to the joint rise of life expectancy and life span equality, however, make it difficult to determine the underlying causes of this relationship. Here, we develop a unifying framework to study life expectancy and life span equality over time, relying on concepts about the pace and shape of aging. We study the dynamic relationship between life expectancy and life span equality with reliable data from the Human Mortality Database for 49 countries and regions with emphasis on the long time series from Sweden. Our results demonstrate that both changes in life expectancy and life span equality are weighted totals of rates of progress in reducing mortality. This finding holds for three different measures of the variability of life spans. The weights evolve over time and indicate the ages at which reductions in mortality increase life expectancy and life span equality: the more progress at the youngest ages, the tighter the relationship. The link between life expectancy and life span equality is especially strong when life expectancy is less than 70 y. In recent decades, life expectancy and life span equality have occasionally moved in opposite directions due to larger improvements in mortality at older ages or a slowdown in declines in midlife mortality. Saving lives at ages below life expectancy is the key to increasing both life expectancy and life span equality.


Author(s):  
W. H. Matthaeus ◽  
Minping Wan ◽  
S. Servidio ◽  
A. Greco ◽  
K. T. Osman ◽  
...  

An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.


2013 ◽  
Vol 726-731 ◽  
pp. 1566-1572 ◽  
Author(s):  
Shi Qiang Ding ◽  
Qing Na Li ◽  
Xin Rong Pang ◽  
Ji Run Xu

The characteristics of flocs aggregated in flocculation have been paid more and more attention for a long time. In this paper, a new classification and analyses method dealing with the flocs is developed. The flocs formed after flocculation is divided into four kinds, including the left primary particles, linear flocs with all component particles in a line, planar flocs with all component particles on a plane and volumetric flocs with all component particles in a three-dimensional space. By analyzing the formation approaches of different kind of flocs regardless of the floc breakage, the number of every kind of floc is analyzed to be related with the suspension concentration mathematically. After comparing the different items in the models describing the relationship of floc number and concentration, a series of simplified expressions are presented. Lastly, a mathematical equation relating the measurable suspension viscosity with the numbers of different flocs is obtained.


2012 ◽  
Vol 229-231 ◽  
pp. 495-498
Author(s):  
Hui Xin Liu ◽  
Xian Min Yang ◽  
Cheng Tao Li ◽  
Xiang Cheng

There is a common problem during kill a well, which is how to quickly and accurately control the surface casing pressure according to the requirements for killing a well. A step-by-step exploration process is employed on operation sites. Continuously adjusting throttle valve to acquire surface casing pressure may lead to failure of kill operation because of its long time and low control accuracy. Obviously, if the calculation problems of throttling drawdown can be resolved,the relationship between drawdown and throttle valve opening can be found and the course of explorating can be converted into a straight course.Then the success rate of killing well can be improved. More importantly, this can make automatic controll of surface casing pressure possible. The paper built the calculation method of throttling pressure drop by theoretical analysis and verified the calculation method by adopting it into field test. The result has showed that the calculation method of throttling pressure drop coincides with experimental results and it can be used in engineering practice.


2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Dong Huang ◽  
Lingna Sun ◽  
Leaf Huang ◽  
Yanzuo Chen

The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.


Author(s):  
Keisuke Minagawa ◽  
Satoshi Fujita

Although, a part of damage of mechanical structures by actual seismic events is caused by cumulative damage, their seismic design is generally carried out by using momentary force or stress, because force and stress are calculated easily. Therefore, damage indicating parameters that can evaluate cumulative damage is necessary, and authors have focused on energy as the parameter. The energy can evaluate fatigue failure because the energy is derived from an integral of a product of force and deformation. In our previous paper, vibration and loading experiments were conducted, and the energy necessary for fatigue failure was reported. However the processes to clarify the energy necessary for failure by fatigue experiments take a long time. The processes will be shortened if the energy is clarified by tensile tests. This paper deals with the energy necessary for tensile failure. In this paper, tensile tests were carried out, and energy necessary for tensile failure was derived. The tensile tests were conducted with various tensile speeds. As a result, more energy is needed when tensile speed is slow. This relationship is same as the relationship confirmed by vibration and loading experiments in our previous papers.


2012 ◽  
Vol 9 (11) ◽  
pp. 4679-4688 ◽  
Author(s):  
S. J. Gibbs ◽  
P. R. Bown ◽  
B. H. Murphy ◽  
A. Sluijs ◽  
K. M. Edgar ◽  
...  

Abstract. Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM), Eocene Thermal Maximum 2 (ETM2) and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.


Sign in / Sign up

Export Citation Format

Share Document