Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

2010 ◽  
Vol 20 (6) ◽  
pp. 064007 ◽  
Author(s):  
Ü Sökmen ◽  
A Stranz ◽  
A Waag ◽  
A Ababneh ◽  
H Seidel ◽  
...  
Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-689-C8-694 ◽  
Author(s):  
T. Hashinaga ◽  
S. Miyazaki ◽  
T. Ueki ◽  
H. Horikawa

2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


2009 ◽  
Vol 1 (3) ◽  
pp. 214-225 ◽  
Author(s):  
D. Remiens ◽  
C. Soyer ◽  
D. Troadec ◽  
D. Deresmes ◽  
D. Jenkins ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


Sign in / Sign up

Export Citation Format

Share Document