scholarly journals Light hadron and diquark spectroscopy in quenched QCD with overlap quarks on a large lattice

2006 ◽  
Vol 2006 (01) ◽  
pp. 086-086 ◽  
Author(s):  
Ronald Babich ◽  
Federico Berruto ◽  
Nicolas Garron ◽  
Christian Hoelbling ◽  
Joseph Howard ◽  
...  
Keyword(s):  
2005 ◽  
Author(s):  
Claudio Rebbi ◽  
Ronald Babich ◽  
Federico Berruto ◽  
Nicolas Garron ◽  
Christian Hoelbling ◽  
...  

2005 ◽  
Vol 140 ◽  
pp. 264-268 ◽  
Author(s):  
F. Berruto ◽  
N. Garron ◽  
C. Hoelbling ◽  
J. Howard ◽  
L. Lellouch ◽  
...  

2021 ◽  
pp. 2000221
Author(s):  
Zhiyuan Han ◽  
Dunlu Sun ◽  
Huili Zhang ◽  
Jianqiao Luo ◽  
Cong Quan ◽  
...  

2021 ◽  
Author(s):  
Mingming Jiang ◽  
Yang Liu ◽  
Ruiming Dai ◽  
Kai Tang ◽  
Peng Wan ◽  
...  

Suffering from the indirect band gap, low carrier mobility, and large lattice mismatch with other semiconductor materials, one of the current challenges in Si-based materials and structures is to prepare...


2021 ◽  
Vol 11 (4) ◽  
pp. 1887
Author(s):  
Markus Scherrer ◽  
Noelia Vico Triviño ◽  
Svenja Mauthe ◽  
Preksha Tiwari ◽  
Heinz Schmid ◽  
...  

It is a long-standing goal to leverage silicon photonics through the combination of a low-cost advanced silicon platform with III-V-based active gain material. The monolithic integration of the III-V material is ultimately desirable for scalable integrated circuits but inherently challenging due to the large lattice and thermal mismatch with Si. Here, we briefly review different approaches to monolithic III-V integration while focusing on discussing the results achieved using an integration technique called template-assisted selective epitaxy (TASE), which provides some unique opportunities compared to existing state-of-the-art approaches. This method relies on the selective replacement of a prepatterned silicon structure with III-V material and thereby achieves the self-aligned in-plane monolithic integration of III-Vs on silicon. In our group, we have realized several embodiments of TASE for different applications; here, we will focus specifically on in-plane integrated photonic structures due to the ease with which these can be coupled to SOI waveguides and the inherent in-plane doping orientation, which is beneficial to waveguide-coupled architectures. In particular, we will discuss light emitters based on hybrid III-V/Si photonic crystal structures and high-speed InGaAs detectors, both covering the entire telecom wavelength spectral range. This opens a new path towards the realization of fully integrated, densely packed, and scalable photonic integrated circuits.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 207-211
Author(s):  
T. KRAFT ◽  
M. METHFESSEL ◽  
M. VAN SCHILFGAARDE ◽  
M. SCHEFFLER

Using the full-potential linear muffin-tin orbital method within the local spin-density approximation we analyse the influence of the nearest neighbour distance on fcc(111) or hcp(0001) iron layers. The LDA-LSDA error in describing ferromagnetic phases is determined to be at least 15 mRy/atom. As a consequence of this error, our calculations favour paramagnetic ground states. In this sense, the reported results have some model character. However, our analysis of the elastic energy cost under distortions should hold for transition metals in general. Allowing relaxations of the interplanar distance the fcc phase can become energetically favourable over the hcp phase at large lattice mismatches. The main reason for this behaviour is the enhanced stiffness of the hcp interplanar bonds due to the shortening of the axial c/a ratio.


Author(s):  
Jonathan B. Hopkins ◽  
Lucas A. Shaw ◽  
Todd H. Weisgraber ◽  
George R. Farquar ◽  
Christopher D. Harvey ◽  
...  

The aim of this paper is to introduce an approach for optimally organizing a variety of different unit cell designs within a large lattice such that the bulk behavior of the lattice exhibits a desired Young’s modulus with a graded change in thermal expansion over its geometry. This lattice, called a graded microarchitectured material, can be sandwiched between two other materials with different thermal expansion coefficients to accommodate their different expansions or contractions caused by changing temperature while achieving a desired uniform stiffness. First, this paper provides the theory necessary to calculate the thermal expansion and Young’s modulus of large multi-material lattices that consist of periodic (i.e., repeating) unit cells of the same design. Then it introduces the theory for calculating the graded thermal expansions of a large multimaterial lattice that consists of non-periodic unit cells of different designs. An approach is then provided for optimally designing and organizing different unit cells within a lattice such that both of its ends achieve the same thermal expansion as the two materials between which the lattice is sandwiched. A MATLAB tool is used to generate images of the undeformed and deformed lattices to verify their behavior and various examples are provided as case studies. The theory provided is also verified and validated using finite element analysis and experimentation.


2017 ◽  
Vol 967 ◽  
pp. 628-631 ◽  
Author(s):  
Shanshan Cao ◽  
Tan Luo ◽  
Yayun He ◽  
Guang-You Qin ◽  
Xin-Nian Wang

Sign in / Sign up

Export Citation Format

Share Document