Influence of geometry on positron binding to molecules

Author(s):  
J R Danielson ◽  
Soumen Ghosh ◽  
clifford surko

Abstract Annihilation studies have established that positrons bind to most molecules. They also provide measurements of the positron-molecule binding energies, which are found to vary widely and depend upon molecular size and composition. Trends of binding energy with global parameters such as molecular polarizability and dipole moment have been discussed previously. In this paper, the dependence of binding energy on molecular geometry is investigated by studying resonant positron annihilation on selected pairs of isomers. It is found that molecular geometry can play a significant role in determining the binding energies even for isomers with very similar polarizabilities and dipole moments. The possible origins of this dependence are discussed.

2020 ◽  
Vol 73 (8) ◽  
pp. 813
Author(s):  
Feng Wang ◽  
Shawkat Islam ◽  
Frederick Backler

Several model stereoisomers such as ferrocene (Fc), methoxyphenol, and furfural conformers are discussed. It was discovered that the Fc IR spectroscopic band(s) below 500cm−1 serve as fingerprints for eclipsed (splitting 17 (471–488)cm−1) and staggered Fc (splitting is ~2 (459–461)cm−1) in the gas phase. It is revealed that in the gas phase the dominance of the eclipsed Fc (D5h) at very low temperatures changes to a mixture of both eclipsed and staggered Fc when the temperature increases. However, in solvents such as CCl4, eclipsed Fc dominates at room temperature (300K) due to the additional solvation energy. Intramolecular interactions of organic model compounds such as methoxyphenols (guaiacol (GUA) and mequinol (MEQ)) and furfural, ionization energies such as the carbon 1s (core C1s), as well as valence binding energy spectra serve this purpose well. Hydrogen bonding alters the C1s binding energies of the methoxy carbon (C(7)) of anti-syn and anti-gauche conformers of GUA to 292.65 and 291.91eV, respectively. The trans and cis MEQ conformers, on the other hand, are nearly energy degenerate, whereas their dipole moments are significantly different: 2.66 Debye for cis and 0.63 Debye for trans-MEQ. Moreover, it is found that rotation around the Cring–OH and the Cring–OCH3 bonds differ in energy barrier height by ~0.50 kcal⋅mol−1. The Dyson orbital momentum profiles of the most different ionic states, 25a′ (0.35eV) and 3a′ (−0.33eV), between cis and trans-MEQ in outer valence space (which is measurable using electron momentum spectroscopy (EMS)), exhibit quantitative differences. Finally, the molecular switch from trans and cis-furfural engages with a small energy difference of 0.74 kcal mol−1, however, at the calculated C(3)(–H⋅⋅⋅O=C) site the C1s binding energy difference is 0.105eV (2.42 kcal mol−1) and the NMR chemical shift of the same carbon site is also significant; 7.58ppm from cis-furfural without hydrogen bonding.


2019 ◽  
Vol 21 (19) ◽  
pp. 9740-9746
Author(s):  
Mohammad Babazadeh ◽  
Paul L. Burn ◽  
David M. Huang

Quantum-chemical calculations show that the direction of the transition dipole moment of organometallic phosphorescent emitters is sensitive to molecular geometry.


2007 ◽  
Vol 22 (27) ◽  
pp. 4901-4910 ◽  
Author(s):  
M. BAWIN ◽  
SIDNEY A. COON ◽  
BARRY R. HOLSTEIN

We analyze the recent claim that experimental measurements of binding energies of dipole-bound anions can be understood in terms of a quantum mechanical anomaly. The discrepancy between the experimental critical dipole moments and that predicted by the anisotropic inverse square potential of a static dipole precludes such an explanation. As has long been known, in the physical problem one must include rotational structure so that the long distance behavior changes from 1/r2 to 1/r4. In a simple model this can be shown to lead to a modification of the critical dipole moment of 20% or so, bringing it into agreement with experiment. This, together with the fact that inclusion of finite size effects does not change the critical dipole moment of the static point dipole, strongly suggests that the quantum mechanical anomaly interpretation of the formation of dipole-bound anions cannot be correct.


2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1405
Author(s):  
Feng Pan ◽  
Yingwen He ◽  
Lianrong Dai ◽  
Chong Qi ◽  
Jerry P. Draayer

A diagonalization scheme for the shell model mean-field plus isovector pairing Hamiltonian in the O(5) tensor product basis of the quasi-spin SUΛ(2) ⊗ SUI(2) chain is proposed. The advantage of the diagonalization scheme lies in the fact that not only can the isospin-conserved, charge-independent isovector pairing interaction be analyzed, but also the isospin symmetry breaking cases. More importantly, the number operator of the np-pairs can be realized in this neutron and proton quasi-spin basis, with which the np-pair occupation number and its fluctuation at the J = 0+ ground state of the model can be evaluated. As examples of the application, binding energies and low-lying J = 0+ excited states of the even–even and odd–odd N∼Z ds-shell nuclei are fit in the model with the charge-independent approximation, from which the neutron–proton pairing contribution to the binding energy in the ds-shell nuclei is estimated. It is observed that the decrease in the double binding-energy difference for the odd–odd nuclei is mainly due to the symmetry energy and Wigner energy contribution to the binding energy that alter the pairing staggering patten. The np-pair amplitudes in the np-pair stripping or picking-up process of these N = Z nuclei are also calculated.


2013 ◽  
Vol 28 (29) ◽  
pp. 1350147 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
ALEXANDER J. SILENKO

General classical equation of spin motion is explicitly derived for a particle with magnetic and electric dipole moments in electromagnetic fields. Equation describing the spin motion relative to the momentum direction in storage rings is also obtained.


2008 ◽  
Vol 607 ◽  
pp. 9-16 ◽  
Author(s):  
J.A. Young ◽  
C.M. Surko

At incident positron energies below the threshold for positronium atom formation, there are many cases in which annihilation rates for molecules are far in excess of that possible on the basis of simple two-body collisions. We now understand that this phenomenon is due to positron attachment to molecules mediated by vibrational Feshbach resonances. The attachment enhances greatly the overlap of the positron with molecular electrons and hence increases the probability of annihilation. Furthermore, measurements of the annihilation spectra as a function of incident positron energy provide a means of measuring positron-molecule binding energies. In this paper we present an overview of our current understanding of this process, highlighting key results and discussing outstanding issues that remain to be explained.


1987 ◽  
Vol 105 ◽  
Author(s):  
Hisham Z. Massoud

AbstractThe magnitude of the dipole moment at the Si-SiO2 interface resulting from partial charge transfer that takes place upon the formation of interface bonds has been calculated. The charge transfer occurs because of the difference in electronegativity between silicon atoms and SiO2 molecules which are present across the interface. Results obtained for (100) and (111) silicon substrates indicate that the magnitude of the interface dipole moment is dependent on substrate orientation and the interface chemistry. Dipole moments at the Si-SiO2 and gate-SiO2 interfaces should be included in the definition of the flatband voltage VFB of MOS structures. CV-based measurements of the metal-semiconductor workfunction difference φms on (100) and (111) silicon oxidized in dry oxygen and metallized with Al agree with the predictions of this model. Other types of interface dipoles and their processing dependence are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document