Strong room temperature exciton absorption of TiO2 nanorods prepared by Ti and Cu ion implantation

2020 ◽  
Vol 53 (18) ◽  
pp. 185103
Author(s):  
G Wang ◽  
Y J Sun ◽  
Y Q Jing ◽  
C L Liu ◽  
H T Dai
1983 ◽  
Vol 27 ◽  
Author(s):  
J.C. Soares ◽  
A.A. Melo ◽  
M.F. DA Silva ◽  
E.J. Alves ◽  
K. Freitag ◽  
...  

ABSTRACTLow and high dose hafnium imolanted beryllium samoles have been prepared at room temperature by ion implantation of beryllium commercial foils and single crystals. These samples have been studied before and after annealing with the time differential perturbed angular correlation method (TDPAC) and with Rutherford backscattering and channeling techniques. A new metastable system has been discovered in TDPAC-measurements in a low dose hafnium implanted beryllium foil annealed at 500°C. Channeling measurements show that the hafnium atoms after annealing, are in the regular tetrahedral sites but dislocated from the previous position occupied after implantation. The formation of this system is connected with the redistribution of oxygen in a thin layer under the surface. This effect does not take place precisely at the same temperature in foils and in single crystals.


1992 ◽  
Vol 262 ◽  
Author(s):  
D. Y. C. Lie ◽  
A. Vantomme ◽  
F. Eisen ◽  
M. -A. Nicolet ◽  
V. Arbet-Engels ◽  
...  

ABSTRACTWe have studied the damage and strain produced in Ge (100) single crystals by implantation of various doses of 300 keV 28Si ions at room temperature. The analyzing tools were x-ray double-crystal diffractometry, and MeV 4He channeling spectrometry. The damage induced by implantation produces positive strain in Ge (100). The maximum perpendicular strain and maximum defect concentration rise nonlinearly with increasing dose. These quantities are linearly related with a dose-independent coefficient of ∼ 0.013 for Ge (100) single crystals implanted at room temperature. The results are compared with those available for Si (100) self-implantation. We have also monitored the strain and defects generated in pseudomorphic Ge0.1Si0.9/Si (100) films induced by room temperature 28Si ion implantation. It is found that the relationship between the strain and defect concentration induced by ion implantation is no longer a simple linear one.


2000 ◽  
Vol 650 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

ABSTRACTIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 oC occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 μm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


2019 ◽  
Vol 963 ◽  
pp. 375-381 ◽  
Author(s):  
Anders Hallén ◽  
Margareta K. Linnarsson ◽  
Lasse Vines

The effect of lattice thermal vibrations on the channeling of 100 keV Al ions in 4H-SiC is investigated. By implanting at room temperature in the direction, the depth distribution of the incident ions is shown to be about 7 times deeper than for random implantations. At higher implantation temperatures, the channeling is reduced by the lattice vibrations and, for instance, at 600 °C implantation the distribution is about 3-4 times deeper than for a RT random implantation. The results are of technological interest for further development of implantation technology for 4H-SiC device manufacturing.


1987 ◽  
Vol 97 ◽  
Author(s):  
Tadamasa Kimura ◽  
Hiroyuki Yamaguchi ◽  
Shigemi Yugo ◽  
Yoshio Adachi

ABSTRACTThe β-SiC formation process through post-implantation annealing of Si-C mixtures fabricated on Si by C-ion implantation at room temperature is studied by means of infrared absorption spectroscopy. It is shown that the formation of B-SiC from the Si-C mixtures is greatly enhanced by the subsequent irradiation of other energetic ions prior to the thermal annealing. The continuous amorphization of the Si-C mixed layers is considered to be the dominant cause for the enhancement of the B-SiC formation. The activation energy of the β-SiC formation process which is 5.3 eV without irradiation is reduced to 4.0 eV by the irradiation of 150 keV, 1 × 1017/cm2 Ar ions.


1999 ◽  
Vol 14 (7) ◽  
pp. 2794-2798 ◽  
Author(s):  
W. Liu ◽  
M. F. Li ◽  
K. L. Teo ◽  
Nakao Akutsu ◽  
Koh Matsumoto

Room-temperature photovoltaic spectroscopy was applied to study undoped GaN, n-type GaN, and InGaN quantum well structures. Clear exciton absorption was observed in the photovoltaic spectra of the undoped GaN, and polarization measurements were made to identify the exciton absorption. For the n-type GaN sample, instead of the exciton absorption we observed only bulk absorption edge, which may be due to the free carrier screening effect. For the InGaN quantum well structures, the photovoltaic spectra showed relatively complicated line shape due to the overlap of the signals from different layers. By changing the reference phase of the lock-in amplifier, we were able to suppress some of the signals and thus identify the origin of the corresponding signal.


1992 ◽  
Vol 258 ◽  
Author(s):  
Stanislaw M. Pietruszko

ABSTRACTThe results of the investigation of doping by B and P ion implantation into LPCVD amorphous silicon films in the range from 2*1015 to 2*1021 atoms/cm3 are presented. The room temperature conductivity increases to 10-2 Ω-1 cm-1 and to 10-2 Ω-1 cm-1 for the highest B and P doping, respectively. The subsequent hydrogenation (2.5 and 5 at%) by ion implantation increases the doping efficiency for P doping. For B doping efficiency increases at the low and decreases for the high doping range. The results of conductivity measurements vs temperature of doped and hydrogenated films are presented.


1993 ◽  
Vol 316 ◽  
Author(s):  
R. Garcia ◽  
E. J. Jaquez ◽  
R.J. Culbertson ◽  
C. D'Acosta ◽  
C. Jasper

ABSTRACTLaser modulated thermoreflectivity, also called thermal wave technology, has been used in recent years to monitor ion implantation dose by monitoring the damage due to implantation. The thermal properties which are affected by lattice perturbations and other crystal imperfections are tracked by this technique. A gauge capability study was performed on the Thermawave TP300 for monitoring ion implantation of GaAs wafers. The results are presented. In order to determine the sensitivity of the technique to changes in dose, a matrix of GaAs and Si wafers was measured. During this study a downward trend was observed in the repeatability of our results. It is shown that damage to a sample during implantation will relax to a certain degree at room temperature. This damage relaxation can take up to 80 hours at room temperature and can be observed using thermal waves. It is shown that “hot wafer decay” follows a logarithmic decay which is indicative of a diffusion process. At 180°C the decay lasts less than 1 minute which indicates that the defects causing this phenomenon have a low activation energy.


2000 ◽  
Vol 647 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

AbstractIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 °C occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 µm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


Sign in / Sign up

Export Citation Format

Share Document