scholarly journals A novel method to remove the background from x-ray diffraction signal

2018 ◽  
Vol 63 (6) ◽  
pp. 06NT03 ◽  
Author(s):  
Yi Zheng ◽  
Robert Speller ◽  
Jennifer Griffiths
2011 ◽  
Vol 396-398 ◽  
pp. 417-420 ◽  
Author(s):  
Xiao Hua Gu ◽  
Shi Wei Li ◽  
Bing Zheng ◽  
Jia Liang Zhou

A novel method is proposed to modify montmorillonite with anionic surfactants, cationic surfactants and halides stearyl cationic surfactants made by our group (Z-surfactant). The structure of organophilic montmorillonite (OMMT) was characterized by XRD and TG. The results of X-ray diffraction show that cationic surfactants and anionic surfactants are all intercalated into the layer of MMT. When modified with cationic surfactants, the interlayer spacing of MMT increases from 1.24 nm to the maximum of 3.76 nm. When it was secondary modified, the insertion order is to insert the cation first and then the anion. The interlayer spacing of montmorillonite increases to 4.80 nm, the modification effect is well.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1187-1193 ◽  
Author(s):  
Bin Li Jiang ◽  
Zi Li Kou ◽  
De Jiang Ma ◽  
Yong Kun Wang ◽  
Chun Xia Li ◽  
...  

In the present study, we present a novel method to sinter Cr3C2 powders under high pressure without any addittives. The sintering Cr3C2 samples were charaterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), relative density measurements, Vicker’s hardness tests and Fracture toughness tests. The reasults show that Cr3C2 powders could be sintered to be bulk under the conditions of 3-5 GPa, 800-1200 °C and the heat preservation for 15 min. Moreover, the sintering body of Cr3C2 compound with the relative density of 99.84% by simultaneously tuning the pressure-temperature conditions exhibited excellent mechanical properties: a Vickers hardness of 20.3 GPa and a fracture toughness of ~8.9 MPam1/2. These properties were much higher than that by using the previous methods. The temperature condition obtained good mechanical properties in the experiment was about 1/3 lower than that using any other methods owing to the high pressure.


2019 ◽  
Vol 43 (3-4) ◽  
pp. 135-139
Author(s):  
Pegah Farokhian ◽  
Manouchehr Mamaghani ◽  
Nosrat Ollah Mahmoodi ◽  
Khalil Tabatabaeian ◽  
Abdollah Fallah Shojaie

An efficient protocol for the facile synthesis of a series of pyrido[2,3- d]pyrimidine derivatives has been developed applying Fe3O4–ZnO–NH2–PW12O40 nanocatalyst in water. This novel method has the benefits of operational simplicity, green aspects by avoiding toxic solvents and high to excellent yields of products. Fe3O4–ZnO–NH2–PW12O40 was synthesized and characterized by Fourier transform infrared, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy analyses. The nanocatalyst is readily isolated and recovered from the reaction mixture by an external magnet.


Author(s):  
Aniek Setiya Budiatin ◽  
Samirah ◽  
Maria Apriliani Gani ◽  
Wenny Putri Nilamsari ◽  
Chrismawan Ardianto ◽  
...  

Bovine bone is a considerable source for the production of hydroxyapatite. The recent study reported a novel method to extract hydroxyapatite from bovine bone without producing hazardous residue. The bovine bones were cut and boiled in the opened chamber followed by boiling in pressurized tank. The bones were then soaked into 95% ethanol. Calcination was then conducted in 800°C, 900°C and 1,000°C, for 2 hours. The result was then grinded and sieved. The powder then was characterized using Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to measure the purity of hydroxyapatite. It is concluded that the hydroxyapatite derived from this process showed 100% purity, resulting 35.34 ± 0.39% w/w from the wet bone weight and 72.3% w/w from the dried weight. The present extraction method has been proven to yield high amount of pure hydroxyapatite as well as reducing the use of hazardous reagent.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 849
Author(s):  
Gracia Shokano ◽  
Zahir Dehouche ◽  
Basile Galey ◽  
Georgeta Postole

The present work involves the development of a novel method for the fabrication of zirconium nickel (Zr(x)Ni(y)) alloy used as a nanocatalyst to improve the hydrogen storage properties of the Mg/MgH2 system. The catalyst was fabricated through the high-pressure reactor and activated under hydrogen prior to being mechanically milled with the MgH2 for 5 h under argon. The microstructure characterisation of the samples was determined via SEM-EDX (scanning electron microscope analysis–energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and FE-HRTEM (field emission high resolution transmission electron microscopy), and the desorption characteristic of the nanocomposite (10 wt.% Zr(x)Ni(y)–MgH2) was determined via TPD (temperature-programmed desorption). The nanostructured MgH2 powder milled with 10 wt.% of the activated Zr(x)Ni(y) based nanocatalyst resulted in a faster hydrogen release—5.9 H2-wt.% at onset temperature 210 °C/peak temperature 232 °C. The observed significant improvement in the hydrogen desorption properties was likely to be the result of the impact of the highly dispersed catalyst on the surface of the Mg/MgH2 system, the reduction in particle size during the ball milling process and/or the formation of Mg0.996Zr0.004 phase during the milling process.


2017 ◽  
Vol 884 ◽  
pp. 3-17 ◽  
Author(s):  
Roberto Montanari ◽  
Alessandra Varone

Precursor phenomena of melting in pure metals and alloys have been investigated by means of Mechanical Spectroscopy (MS) and High Temperature X-ray Diffraction (HT-XRD). The examined materials were the pure metals In, Sn, Pb and Bi, and some alloys of the systems In-Sn and Pb-Bi with different compositions.MS tests have been carried out by means of a novel method developed by us that permits to operate in resonance conditions and employs hollow reeds of stainless steel containing the liquid metal. In all the metals a sharp drop of dynamic modulus and a Q-1 maximum were observed in a temperature range ΔT before melting that depends on the specific metal and its structure. Such anelastic behaviour is consistent with an increase of the interstitialcies concentration as predicted by the Granato’s theory.Moreover, HT-XRD evidenced that sudden grain re-orientation, shift and broadening of diffraction peaks occur just before the formation of the first liquid, therefore self-interstitials and vacancies seem to play a synergic role in melting. The increase of self-interstitials over ΔT has the effect of weakening interatomic bonds that favours the successive vacancy avalanche leading to the collapse of crystal lattice (melting).


2006 ◽  
Vol 74 (18) ◽  
Author(s):  
J. Hawreliak ◽  
J. D. Colvin ◽  
J. H. Eggert ◽  
D. H. Kalantar ◽  
H. E. Lorenzana ◽  
...  

2014 ◽  
Vol 32 (4) ◽  
pp. 669-675 ◽  
Author(s):  
Piotr Szperlich ◽  
Bartłomiej Toroń ◽  
Marian Nowak ◽  
Marcin Jesionek ◽  
Mirosława Kępińska ◽  
...  

AbstractIn this paper a novel method of SbSI single crystals fabrication is presented. In this method a sonochemically prepared SbSI gel is used as an intermediate product in a vapour growth process. The main advantages of the presented technique are as follows. First, the SbSI gel source material has lower temperature of sublimation and allows to avoid explosions during SbSI synthesis (the sonochemical synthesis is free of any explosion hazard). Second, but not least, the grown SbSI single crystals have smaller ratio of longitudinal and lateral dimensions. The cross sections of the presented crystals are relatively large (they are up to 9 mm2). The crystals have been characterized by X-ray diffraction, angle-resolved optical spectroscopy, and diffusive reflectivity.


Sign in / Sign up

Export Citation Format

Share Document