Theoretical studies of low-frequency Alfvén modes in tokamak plasmas

Author(s):  
R R Ma ◽  
Liu Chen ◽  
Fulvio Zonca ◽  
Yueyan Li ◽  
Zhiyong Qiu

Abstract Linear wave properties of the low-frequency Alfvén modes (LFAMs) observed in the DIII-D tokamak experiments with reversed magnetic shear [Nucl. Fusion 61, 016029 (2021)] are theoretically studied and delineated based on the general fishbone-like dispersion relation. By adopting the representative experimental equilibrium parameters, it is found that, in the absence of energetic ions, the LFAM is a kinetic ballooning mode instability of reactive-type with a dominant Alfvénic polarization. More specifically, due to diamagnetic and trapped particle effects, the LFAM can be coupled with the beta-induced Alfvén-acoustic mode in the low-frequency region (frequency much less than the thermal-ion transit and/or bounce frequency); or with the beta-induced Alfvén eigenmode in the high frequency region (frequency higher than or comparable to the thermal-ion transit frequency); resulting in reactive-type instabilities. Moreover, the ‘Christmas light’ and ‘mountain peak’ spectral patterns of LFAMs as well as the dependence of instability drive on the electron temperature observed in the experiments can be theoretically interpreted by varying the relevant physical parameters. Conditions when dissipative-type instabilities may set in are also discussed.

2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1148 ◽  
Author(s):  
Miao Yu ◽  
Shihan Yan ◽  
Yong-qiang Sun ◽  
Wang Sheng ◽  
Fu Tang ◽  
...  

Terahertz time-domain spectroscopy (THz-TDS) is an effective coherent detection technique for deeply understanding the structures and functions of biomolecules. However, generally not full information in the whole THz range can be obtained due to the limited detection bandwidth (usually less than 5 THz) of the traditional THz-TDS systems. In this paper, effective THz absorption spectra in 0.5–10 THz range of five typical nucleobases of DNA/RNA are characterized with a super broadband THz detection technique, called the air-biased- coherent-detection (THz-ABCD) technique. Few unexpected characteristic absorption peaks appeared in the low-frequency region and meanwhile a series of anticipated characteristic absorption peaks are found in the high-frequency region. The fingerprint spectra of these nucleobases are helpful for further analysis on the vibration and twisting behavior of hydrogen bonds, van der Waals and electrostatic forces etc. between and within DNA/RNA biomolecules.


2011 ◽  
Vol 01 (04) ◽  
pp. 455-464 ◽  
Author(s):  
K. SAMBASIVA RAO ◽  
HAILEEYESUS WORKINEH ◽  
A. SWATHI ◽  
B. S. KALYANI

Polycrystalline ( Bi 0.94-x Dy x Na 0.94)0.5 Ba 0.06 TiO 3 ceramics (x = 0, 0.04, and 0.08, designated as BNBT6, BNBT6: 4Dy and BNBT6: 8Dy, respectively) were prepared by conventional high temperature sintering method. The X-ray diffraction patterns show pure perovskite structure with no secondary phases. Lattice parameters and unit cell volumes have decreased due to Dy2O3 substitution. SEM micrographs revealed denser samples (ρrel > 97%) with uniformly distributed grain sizes. The room temperature piezoelectric properties of Dy2O3 substituted sample at x = 0.04 were relatively higher: d33 = 147 pC/N, k p = 28% and Q m = 128. The samples exhibited infinitesimal change in thickness (≈ 15 nm) to an applied voltage of 100 V, which could be utilized in actuator applications. Relaxor behavior and broad dielectric maxima with diffuse phase transition were observed. The value of RT dielectric constant has increased while dielectric loss was decreased due to Dy2O3 substitution. Conductivity in the materials obeys Jonscher's universal power law. The conductivity in the low frequency region is associated with short range translational hopping while it is associated with the reorientational hopping in the high frequency region. The charge carrier concentration term remained constant over the entire temperature range of (30–500°C).


2014 ◽  
Vol 618 ◽  
pp. 519-522
Author(s):  
Guang Yu ◽  
Wen Bang Sun ◽  
Gang Liu ◽  
Mai Yu Zhou

Optical remote image is affected by thin cloud inevitably, which debases image definition. Traditional homomorphism filtering frequently used in thin cloud removing has affect on the cloud in low frequency region, but is not effective for those in high frequency region. An improved homomorphism filtering method is proposed on the basis of statistical characters of image information. Instead of the filtering in frequency field, it isolates the low frequency component of the image representing cloud information with calculating neighborhood average in spatial field. Then, the filtered image is enhanced based on rough set. The experiment results show that the proposed method compared to traditional methods can obtain good results and performs faster.


2014 ◽  
Vol 937 ◽  
pp. 465-471
Author(s):  
Xiao Ling Gai ◽  
Xian Hui Li ◽  
Rui Wu ◽  
Bin Zhang ◽  
Jun Juan Zhao

Microperforated panel (MPP) absorbers have been developed rapidly and used in many fields in recent years. First, based on the Maa’s theory, the theoretical development of MPP is reviewed in this paper. Furthermore, structure design and processing technology of MPP are introduced. Finally, the further development of MPP is discussed. Based on the MPP theory and electro-acoustical equivalent circuit principle, sound absorption properties of three-leaf microperforated panel (TMPP) absorbers without a rigid backing are studied to broaden the sound absorption bandwidth of MPP structure. Simulation results show that TMPP absorbers without a rigid backing have two resonance peaks and the energy dissipated coefficient remains constant in the low frequency range. The resonance frequency moves toward low frequency region with the increasing of the distance, thickness and pore diameter of MPP and moves toward high frequency region with the increasing of the perforation when other parameters keep invariant. The energy dissipated coefficient more than 0.5 over 8 octaves by choosing proper parameters. In conclusion, TMPP absorbers without a rigid backing have good sound absorption properties in a wide frequency range.


2013 ◽  
Vol 357-360 ◽  
pp. 1206-1211
Author(s):  
Xiao Ling Gai ◽  
Xian Hui Li ◽  
Bin Zhang ◽  
Peng Xie ◽  
Zhi Hui Ma

The sound absorption ability of screen or perforated membrane is studied based on rigid frame porous models combined with thin membrane resonance sound absorbing theory in this paper. Results show that the sound absorption of screen or perforated membrane is better considering the role of membrane than using the rigid frame porous models when the mass density of screen or perforated membrane is smaller. The rigid frame porous model is very accuracy to model the sound absorption ability of screen or perforated membrane when the mass density of membrane is greater. The parameter studies present that the sound absorption peaks move toward low frequency region with the increasing of the depth of air-back cavity, mass density and thickness of screens or perforated membrane and moves toward high frequency region with the increasing of the perforation and perforated radius of screens or perforated membrane when other parameters keep invariant.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiming Chen ◽  
Liping Chen ◽  
Mohammad Shabaz

In the present scenario, image fusion is utilized at a large level for various applications. But, the techniques and algorithms are cumbersome and time-consuming. So, aiming at the problems of low efficiency, long running time, missing image detail information, and poor image fusion, the image fusion algorithm at pixel level based on edge detection is proposed. The improved ROEWA (Ratio of Exponentially Weighted Averages) operator is used to detect the edge of the image. The variable precision fitting algorithm and edge curvature change are used to extract the feature line of the image edge and edge angle point of the feature to improve the stability of image fusion. According to the information and characteristics of the high-frequency region and low-frequency region, different image fusion rules are set. To cope with the high-frequency area, the local energy weighted fusion approach based on edge information is utilized. The low-frequency region is processed by merging the region energy with the weighting factor, and the fusion results of the high findings demonstrate that the image fusion technique presented in this work increases the resolution by 1.23 and 1.01, respectively, when compared to the two standard approaches. When compared to the two standard approaches, the experimental results show that the proposed algorithm can effectively reduce the lack of image information. The sharpness and information entropy of the fused image are higher than the experimental comparison method, and the running time is shorter and has better robustness.


1974 ◽  
Vol 29 (7) ◽  
pp. 1011-1016
Author(s):  
W. Nitsch ◽  
H. J. Falge ◽  
R. Claus

Polar phonon modes in single crystalline K3Cu(CN)4 and K3Ag(CN)4 have been experimentally studied by light scattering. Measurements at 293, 82 and 6 K made possible assignments in the low frequency region from 0 to about 700 cm-1 and the high frequency region from 2030 to about 2100 cm-1 originating from the C≡N stretching vibrations. Directional dispersion due to the anisotropy of K3Cu(CN)4 has been studied and allowed the identification of the transversal and longitudinal vibrations in the high frequency region. IR-reflectivity measurements, partly on the basis of the ATR-method, have been used in order to support the assignments in this region.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350015
Author(s):  
KE DONG ◽  
GUOXING LU

The general behavior of wave propagation in liposomes, including the effect of rotary inertia, is examined in this paper, based on a continuum cylindrical shell model. The disperse curves are obtained by solving an eigenvalue problem. The characteristics of wave propagation in liposomes are described using numerical examples. The results show that wave propagation in liposomes has a threshold critical frequency beyond which the wave speed drops dramatically and also a cut-off critical frequency below which the corresponding wave mode does not appear. The torsional wave speed is obtained for the symmetrical circumferential mode n = 0. The cut-off or threshold critical frequency decreases with the increase of liposomal radius, but the effect of radius on wave speed is not significant in the frequency region higher than the critical frequency. On the other hand, the wave number n leads to an increase in the critical frequency. For the first and second wave modes, the wave speed is insensitive to the wave number when the frequency is greater than the critical frequency. For the third wave mode in the low frequency region, the wave number leads to an increase in the wave speed. The rotary inertia has little influence on those wave modes which contain cut-off frequencies. For other wave modes, the rotary inertia results in a decrease in the wave speed in the high frequency region. This investigation may provide a useful guide in the applications of liposomes in ultrasound-based drug delivery and release.


2016 ◽  
Vol 14 (03) ◽  
pp. 393-413 ◽  
Author(s):  
Naofumi Mori ◽  
Shuichi Kawashima

We study the Timoshenko system with Cattaneo’s type heat conduction in the one-dimensional whole space. We investigate the dissipative structure of the system and derive the optimal [Formula: see text] decay estimate of the solution in a general situation. Our decay estimate is based on the detailed pointwise estimate of the solution in the Fourier space. We observe that the decay property of our Timoshenko–Cattaneo system is of the regularity-loss type. This decay property is a little different from that of the dissipative Timoshenko system (see [K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18 (2008) 647–667]) in the low frequency region. However, in the high frequency region, it is just the same as that of the Timoshenko–Fourier system (see [N. Mori and S. Kawashima, Decay property for the Timoshenko system with Fourier’s type heat conduction, J. Hyperbolic Differential Equations 11 (2014) 135–157]) or the dissipative Timoshenko system (see [K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18 (2008) 647–667]), although the stability number is different. Finally, we study the decay property of the Timoshenko system with the thermal effect of memory-type by reducing it to the Timoshenko–Cattaneo system.


Sign in / Sign up

Export Citation Format

Share Document