SYNTHESIS, PIEZOELECTRIC, DIELECTRIC AND CONDUCTIVITY STUDIES ON Dy2O3 SUBSTITUTED (Bi0.94Na0.94)0.5Ba0.06TiO3 CERAMICS

2011 ◽  
Vol 01 (04) ◽  
pp. 455-464 ◽  
Author(s):  
K. SAMBASIVA RAO ◽  
HAILEEYESUS WORKINEH ◽  
A. SWATHI ◽  
B. S. KALYANI

Polycrystalline ( Bi 0.94-x Dy x Na 0.94)0.5 Ba 0.06 TiO 3 ceramics (x = 0, 0.04, and 0.08, designated as BNBT6, BNBT6: 4Dy and BNBT6: 8Dy, respectively) were prepared by conventional high temperature sintering method. The X-ray diffraction patterns show pure perovskite structure with no secondary phases. Lattice parameters and unit cell volumes have decreased due to Dy2O3 substitution. SEM micrographs revealed denser samples (ρrel > 97%) with uniformly distributed grain sizes. The room temperature piezoelectric properties of Dy2O3 substituted sample at x = 0.04 were relatively higher: d33 = 147 pC/N, k p = 28% and Q m = 128. The samples exhibited infinitesimal change in thickness (≈ 15 nm) to an applied voltage of 100 V, which could be utilized in actuator applications. Relaxor behavior and broad dielectric maxima with diffuse phase transition were observed. The value of RT dielectric constant has increased while dielectric loss was decreased due to Dy2O3 substitution. Conductivity in the materials obeys Jonscher's universal power law. The conductivity in the low frequency region is associated with short range translational hopping while it is associated with the reorientational hopping in the high frequency region. The charge carrier concentration term remained constant over the entire temperature range of (30–500°C).

2012 ◽  
Vol 557-559 ◽  
pp. 64-67
Author(s):  
Jun Gang Li ◽  
Ying Lv ◽  
Hong Wei Wang ◽  
Zhao Jun Zhu ◽  
Zun Jie Wei ◽  
...  

The electrochemical corrosion behavior of as-cast Mg-7Li alloy in 3.5wt% NaCl aqueous solution was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical workstation. Results showed that the Ecorr and the Icorr of Mg-7Li alloy were -1.5857V and 2.235×10-4A/cm2, respectively. The cathode process was chiefly the hydrogen evolution reaction, and the corrosion rate of Mg-7Li alloy was mainly controlled by anode dissolution. The corrosion products on the alloy surface consisted of Mg(OH)2, Li2O2 and Al(OH)3. The electrochemical impedance spectroscopy (EIS) of Mg-7Li alloy contained two capacitive loops and one inductive loop. The inductance value increased to 250 ohm•cm-2 with a rise in frequency at low frequency region. The value of capacitive reactance decreased with increasing frequency at medium frequency. The capacitive reactance maintained the value of 50 ohm•cm-2 with increasing frequency at high frequency region.


2012 ◽  
Vol 11 (03) ◽  
pp. 1240007 ◽  
Author(s):  
P. B. BELAVI ◽  
G. N. CHAVAN ◽  
L. R. NAIK ◽  
R. K. KOTNALA

The particulate composites with general formula (y) Ni 0.85 Cd 0.1 Cu 0.05 Fe 2 O 4 + (1 - y) BaTiO 3, (0.0 < y < 1.0) were synthesized by conventional double sintering ceramic technique. The formation of cubic spinel structure in ferrite phase and tetragonal perovskite structure in ferroelectric phase was confirmed by X-ray diffraction (XRD) measurements. The surface morphology with average grain size of the composites was studied by SEM measurements. The study of variation of dielectric constant with frequency (20 Hz to 1 MHz) shows dielectric dispersion behavior in the low frequency region and almost constant at high frequency region. The linear variation in a.c conductivity with frequency shows small polaron type of conduction mechanism in the composites. The vibrating sample magnetometer (VSM) was used to study the magnetic properties such as saturation magnetization and magnetic moment.


2018 ◽  
Vol 775 ◽  
pp. 63-67
Author(s):  
Xrijslove B. Meneses ◽  
Audrey S. Rillera ◽  
Luigi A. Dahonog ◽  
Alvin Karlo Garcia Tapia

In this study, different mass concentrations of Polyaniline-emeraldine salt (PAni-ES) was mixed with bentonite clay. XRD analysis showed the incorporation of PAni-ES in bentonite. The AC conductivity was calculated from Impedance measurements. The conductivities increased with increasing concentration of PAni-ES. The AC conductivities follow a transition from frequency-independent to frequency-dependent at a critical frequency, ωc. Above ωc, the conductivity follows a universal power law behavior as described for disordered materials. Using jump relaxation model, the conductivity is governed by translational ion hopping in the low-frequency region, and well-localized ion hopping in the high-frequency region.


2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1148 ◽  
Author(s):  
Miao Yu ◽  
Shihan Yan ◽  
Yong-qiang Sun ◽  
Wang Sheng ◽  
Fu Tang ◽  
...  

Terahertz time-domain spectroscopy (THz-TDS) is an effective coherent detection technique for deeply understanding the structures and functions of biomolecules. However, generally not full information in the whole THz range can be obtained due to the limited detection bandwidth (usually less than 5 THz) of the traditional THz-TDS systems. In this paper, effective THz absorption spectra in 0.5–10 THz range of five typical nucleobases of DNA/RNA are characterized with a super broadband THz detection technique, called the air-biased- coherent-detection (THz-ABCD) technique. Few unexpected characteristic absorption peaks appeared in the low-frequency region and meanwhile a series of anticipated characteristic absorption peaks are found in the high-frequency region. The fingerprint spectra of these nucleobases are helpful for further analysis on the vibration and twisting behavior of hydrogen bonds, van der Waals and electrostatic forces etc. between and within DNA/RNA biomolecules.


2011 ◽  
Vol 415-417 ◽  
pp. 1399-1402 ◽  
Author(s):  
Shu Yuan Zhang ◽  
Quan Xi Cao

La 0.7 Sr 0.3 MnO 3 powders have been synthesized at different temperatures by the traditional solid state method. The crystal structures have been characterized by X-ray diffraction (XRD). The electromagnetic parameters were measured by vector network analyzer (VNA) within the frequency range of 5.85-18GHz. It’s found that the pure perovskite structure has been obtained at the temperature of 1000°C. The bandwidth for R<-6dB became thinner with the sintering temperature’s increase from 1000°C to 1150°C, and the absorbing peak moves to the higher frequency first and low frequency then, the absorbing peak is enhanced first and weakened then.


2014 ◽  
Vol 618 ◽  
pp. 519-522
Author(s):  
Guang Yu ◽  
Wen Bang Sun ◽  
Gang Liu ◽  
Mai Yu Zhou

Optical remote image is affected by thin cloud inevitably, which debases image definition. Traditional homomorphism filtering frequently used in thin cloud removing has affect on the cloud in low frequency region, but is not effective for those in high frequency region. An improved homomorphism filtering method is proposed on the basis of statistical characters of image information. Instead of the filtering in frequency field, it isolates the low frequency component of the image representing cloud information with calculating neighborhood average in spatial field. Then, the filtered image is enhanced based on rough set. The experiment results show that the proposed method compared to traditional methods can obtain good results and performs faster.


2014 ◽  
Vol 937 ◽  
pp. 465-471
Author(s):  
Xiao Ling Gai ◽  
Xian Hui Li ◽  
Rui Wu ◽  
Bin Zhang ◽  
Jun Juan Zhao

Microperforated panel (MPP) absorbers have been developed rapidly and used in many fields in recent years. First, based on the Maa’s theory, the theoretical development of MPP is reviewed in this paper. Furthermore, structure design and processing technology of MPP are introduced. Finally, the further development of MPP is discussed. Based on the MPP theory and electro-acoustical equivalent circuit principle, sound absorption properties of three-leaf microperforated panel (TMPP) absorbers without a rigid backing are studied to broaden the sound absorption bandwidth of MPP structure. Simulation results show that TMPP absorbers without a rigid backing have two resonance peaks and the energy dissipated coefficient remains constant in the low frequency range. The resonance frequency moves toward low frequency region with the increasing of the distance, thickness and pore diameter of MPP and moves toward high frequency region with the increasing of the perforation when other parameters keep invariant. The energy dissipated coefficient more than 0.5 over 8 octaves by choosing proper parameters. In conclusion, TMPP absorbers without a rigid backing have good sound absorption properties in a wide frequency range.


2013 ◽  
Vol 357-360 ◽  
pp. 1206-1211
Author(s):  
Xiao Ling Gai ◽  
Xian Hui Li ◽  
Bin Zhang ◽  
Peng Xie ◽  
Zhi Hui Ma

The sound absorption ability of screen or perforated membrane is studied based on rigid frame porous models combined with thin membrane resonance sound absorbing theory in this paper. Results show that the sound absorption of screen or perforated membrane is better considering the role of membrane than using the rigid frame porous models when the mass density of screen or perforated membrane is smaller. The rigid frame porous model is very accuracy to model the sound absorption ability of screen or perforated membrane when the mass density of membrane is greater. The parameter studies present that the sound absorption peaks move toward low frequency region with the increasing of the depth of air-back cavity, mass density and thickness of screens or perforated membrane and moves toward high frequency region with the increasing of the perforation and perforated radius of screens or perforated membrane when other parameters keep invariant.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiming Chen ◽  
Liping Chen ◽  
Mohammad Shabaz

In the present scenario, image fusion is utilized at a large level for various applications. But, the techniques and algorithms are cumbersome and time-consuming. So, aiming at the problems of low efficiency, long running time, missing image detail information, and poor image fusion, the image fusion algorithm at pixel level based on edge detection is proposed. The improved ROEWA (Ratio of Exponentially Weighted Averages) operator is used to detect the edge of the image. The variable precision fitting algorithm and edge curvature change are used to extract the feature line of the image edge and edge angle point of the feature to improve the stability of image fusion. According to the information and characteristics of the high-frequency region and low-frequency region, different image fusion rules are set. To cope with the high-frequency area, the local energy weighted fusion approach based on edge information is utilized. The low-frequency region is processed by merging the region energy with the weighting factor, and the fusion results of the high findings demonstrate that the image fusion technique presented in this work increases the resolution by 1.23 and 1.01, respectively, when compared to the two standard approaches. When compared to the two standard approaches, the experimental results show that the proposed algorithm can effectively reduce the lack of image information. The sharpness and information entropy of the fused image are higher than the experimental comparison method, and the running time is shorter and has better robustness.


Sign in / Sign up

Export Citation Format

Share Document