Electron multiplication and avalanching in nanovoids at the initial stage of nanosecond discharge in liquid water

Author(s):  
Zdenek Bonaventura ◽  
Jan Tungli ◽  
Petr Bílek ◽  
Milan Šimek
2021 ◽  
Vol 30 (4) ◽  
pp. 04LT01
Author(s):  
Petr Bílek ◽  
Ján Tungli ◽  
Tomáš Hoder ◽  
Milan Šimek ◽  
Zdeněk Bonaventura

2019 ◽  
Vol 28 (2) ◽  
pp. 02LT02 ◽  
Author(s):  
Branislav Pongrác ◽  
Milan Šimek ◽  
Peter Ondáč ◽  
Martin Člupek ◽  
Václav Babický ◽  
...  

Author(s):  
Petr Hoffer ◽  
Petr Bílek ◽  
Vaclav Prukner ◽  
Zdenek Bonaventura ◽  
Milan Šimek

Abstract Gaseous micro-bubbles dispersed in liquid water represent perturbations of the homogeneity of the liquid and influence the onset of electrical discharge in the bulk liquid. In this study, we systematically examined shadowgraph images to analyse the gaseous structures occurring in response to nanosecond micro-discharges produced in deionised water. The images revealed the dynamics of resolved bubbles and unresolved sub-micrometric structures starting from nanoseconds after the onset of discharge. We provide absolute counts and the radii distributions of micro-bubbles that occur near the anode needle and show how this depends on the amplitude and repetition frequency of the applied high-voltage pulses, when the latter varies between 0.1 and 100 Hz. A systematic statistical analysis showed that the probability of producing bubble-assisted nanosecond discharge in the liquid phase rapidly increases with the discharge repetition rate (>0.5 Hz). Although the cavitation bubble formed around the anode disintegrates and disappears from the anode region within the first millisecond, the sub-micrometric structures remain for tens of milliseconds, and fragmented micro-bubbles survive even for hundreds of milliseconds. Our findings impose strict limitations on the experimental setups used to investigate the mechanisms of direct discharge in liquid water.


2020 ◽  
Author(s):  
Maurin Zouzoua ◽  
Fabienne Lohou ◽  
Paul Assamoi ◽  
Marie Lothon ◽  
Véronique Yoboue ◽  
...  

Abstract. Within the framework of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions over West Africa) project, and based on a field experiment conducted in June and July 2016, we analyse the daytime breakup of the continental low-level stratiform clouds in southern West Africa. We use the observational data gathered during twenty-two precipitation-free occurrences at Savè supersite, in Benin. Our analysis, which starts since the stratiform cloud formation usually at night, focuses on the role played by the coupling between the cloud and the surface in the transition towards shallow convective clouds. It is based on several diagnostics, including Richardson number and various cloud macrophysical properties. The distance between lifting condensation level and cloud base height is used as a criterion of coupling. We also make an attempt to estimate the most predominant terms of the liquid water path budget on early morning. When the nocturnal low-level stratiform cloud forms, it is decoupled from the surface, except in one case. On early morning, the cloud is found coupled with the surface in nine cases and is remained decoupled in the thirteen other cases. The coupling, which occurs within the four hours after the cloud formation, is accompanied with a cloud base lowering and near-neutral thermal stability in the subcloud layer. Further, at the initial stage of the transition, the stratiform cloud base is slightly cooler, wetter and more homogeneous in the coupled cases. The moisture jump at cloud top is found usually around 2 g kg−1, and the temperature jump within 1–5 K, which is significantly smaller than typical marine stratocumulus, and explained by the monsoon flow environment within which the stratiform cloud develops. No significant difference of liquid water path budget terms was found between the coupled and decoupled cases. In agreement with previous numerical studies, we found that the stratiform cloud maintenance before the sunrise results from the interplay between the predominant radiative cooling, and, the entrainment and large scale subsidence at its top. Three transition scenarios were observed, depending on the state of the coupling at the initial stage. In the coupled cases, the low-level stratiform cloud remains coupled until its break up. In five of the decoupled cases, the cloud couples with the surface as the LCL is rising. In the eight remaining cases, the stratiform cloud remains decoupled from the surface all along its life cycle. In case of coupling during the transition, the stratiform cloud base lifts with the growing convective boundary layer roughly between 06:30 and 08:00 UTC. The cloud deck breakup occurring at 11:00 UTC or later leads to the formation of shallow convective clouds. When the decoupling subsists, shallow cumulus clouds form below the stratiform cloud deck between 06:30 and 09:00 UTC. The breakup time in this scenario has a stronger variability, and occurs before 11:00 UTC in most of the cases. Thus we argue that the coupling with the surface during the daytime hours has a crucial role in the low-level stratiform cloud maintenance and in its transition towards shallow convective clouds.


Author(s):  
D.W. Susnitzky ◽  
S.R. Summerfelt ◽  
C.B. Carter

Solid-state reactions have traditionally been studied in the form of diffusion couples. This ‘bulk’ approach has been modified, for the specific case of the reaction between NiO and Al2O3, by growing NiAl2O4 (spinel) from electron-transparent Al2O3 TEM foils which had been exposed to NiO vapor at 1415°C. This latter ‘thin-film’ approach has been used to characterize the initial stage of spinel formation and to produce clean phase boundaries since further TEM preparation is not required after the reaction is completed. The present study demonstrates that chemical-vapor deposition (CVD) can be used to deposit NiO particles, with controlled size and spatial distributions, onto Al2O3 TEM specimens. Chemical reactions do not occur during the deposition process, since CVD is a relatively low-temperature technique, and thus the NiO-Al2O3 interface can be characterized. Moreover, a series of annealing treatments can be performed on the same sample which allows both Ni0-NiAl2O4 and NiAl2O4-Al2O3 interfaces to be characterized and which therefore makes this technique amenable to kinetics studies of thin-film reactions.


Author(s):  
H. Bethge

Besides the atomic surface structure, diverging in special cases with respect to the bulk structure, the real structure of a surface Is determined by the step structure. Using the decoration technique /1/ it is possible to image step structures having step heights down to a single lattice plane distance electron-microscopically. For a number of problems the knowledge of the monatomic step structures is important, because numerous problems of surface physics are directly connected with processes taking place at these steps, e.g. crystal growth or evaporation, sorption and nucleatlon as initial stage of overgrowth of thin films.To demonstrate the decoration technique by means of evaporation of heavy metals Fig. 1 from our former investigations shows the monatomic step structure of an evaporated NaCI crystal. of special Importance Is the detection of the movement of steps during the growth or evaporation of a crystal. From the velocity of a step fundamental quantities for the molecular processes can be determined, e.g. the mean free diffusion path of molecules.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
C. Vannuffel ◽  
C. Schiller ◽  
J. P. Chevalier

Recently, interest has focused on the epitaxy of GaAs on Si as a promising material for electronic applications, potentially for integration of optoelectronic devices on silicon wafers. The essential problem concerns the 4% misfit between the two materials, and this must be accommodated by a network of interfacial dislocations with the lowest number of threading dislocations. It is thus important to understand the detailed mechanism of the formation of this network, in order to eventually reduce the dislocation density at the top of the layers.MOVPE growth is carried out on slightly misoriented, (3.5°) from (001) towards , Si substrates. Here we report on the effect of this misorientation on the interfacial defects, at a very early stage of growth. Only the first stage, of the well-known two step growth process, is thus considered. Previously, we showed that full substrate coverage occured for GaAs thicknesses of 5 nm in contrast to MBE growth, where substantially greater thicknesses are required.


Sign in / Sign up

Export Citation Format

Share Document