scholarly journals The physics of Empty Liquids: from Patchy particles to Water

Author(s):  
John Russo ◽  
Fabio Leoni ◽  
Fausto Martelli ◽  
Francesco SCIORTINO

Abstract Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.

1993 ◽  
Vol 46 (3) ◽  
pp. 423 ◽  
Author(s):  
L Swierkowski ◽  
D Neilson ◽  
J Szymanski

Two layers of electrons or holes trapped at the adjacent interfaces of a gallium arsenide heterostructure can interact through the Coulomb interaction; this leads to a rich phase diagram of ground states, some of which are inhomogeneous in density. The cause of this is associated with each layer's acting as a polarisable background for the other, making it much easier for inhomogeneous configurations to be stable. Even in the uniform liquid phase the presence of a second layer can qualitatively change the nature of the low lying excitation spectrum and lead to large many-body effects in the spectrum, even at very long wavelengths.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
J. M. Walsh ◽  
K. P. Gumz ◽  
J. C. Whittles ◽  
B. H. Kear

During a routine examination of the microstructure of rapidly solidified IN-100 powder, produced by a newly-developed centrifugal atomization process1, essentially two distinct types of microstructure were identified. When a high melt superheat is maintained during atomization, the powder particles are predominantly coarse-grained, equiaxed or columnar, with distinctly dendritic microstructures, Figs, la and 4a. On the other hand, when the melt superheat is reduced by increasing the heat flow to the disc of the rotary atomizer, the powder particles are predominantly microcrystalline in character, with typically one dendrite per grain, Figs, lb and 4b. In what follows, evidence is presented that strongly supports the view that the unusual microcrystalline structure has its origin in dendrite erosion occurring in a 'mushy zone' of dynamic solidification on the disc of the rotary atomizer.The critical observations were made on atomized material that had undergone 'splat-quenching' on previously solidified, chilled substrate particles.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matúš Orendáč ◽  
Slavomír Gabáni ◽  
Pavol Farkašovský ◽  
Emil Gažo ◽  
Jozef Kačmarčík ◽  
...  

AbstractWe present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry–Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.


2002 ◽  
Vol 51 ◽  
pp. 215-232
Author(s):  
Scott Sturgeon

Consider the frameS believes that—.Fill it with a conditional, sayIf you eat an Apple, you'll drink a Coke.what makes the result true? More generally, what facts are marked by instances ofS believes (A→C)?In a sense the answer is obious: beliefs are so marked. Yet that bromide leads directly to competing schools of thought. And the reason is simple.Common-sense thinks of belief two ways. Sometimes it sees it as a three-part affair. When so viewed either you believe, disbelieve, or suspend judgment. This take on belief is coarse-grained. It says belief has three flavours: acceptance, rejection, neither. But it's not the only way common-sense thinks of belief. Sometimes it's more subtle: ‘How strong is your faith?’ can be apposite between believers. That signals an important fact. Ordinary practice also treats belief as a fine-grained affair. It speaks of levels of confidence. It admits degrees of belief. It contains a fine-grained take as well. There are two ways belief is seen in everyday life. One is coarse-grained. The other is fine-grained.


2021 ◽  
Vol 314 ◽  
pp. 172-177
Author(s):  
Yuta Sasaki ◽  
Yousuke Hanawa ◽  
Masayuki Otsuji ◽  
Naozumi Fujiwara ◽  
Masahiko Kato ◽  
...  

Damage-free drying becomes increasingly difficult with the scaling of semiconductor devices. In this work, we studied a new sublimation drying technology for 3nm node and beyond. In order to investigate the collapse factor by conventional sublimation drying, we observed the pattern with cryo-SEM and revealed that the collapse occurred when the liquid film on the substrate solidified. Based on this result, we considered that it was important to deposit a solidified film uniformly from the substrate side to suppress collapse. Two key process parameters were evaluated to achieve the uniform formation of the solidified film. One is interfacial free energy and the other is film thickness of solution just before solidification. By optimizing two key parameters, it was successfully demonstrated to suppress pattern collapse of challenging devices. In this paper, we report on a new drying method: sublimation drying by LPD (Liquid-phase deposition).


Sign in / Sign up

Export Citation Format

Share Document