scholarly journals Electron Liquid in Double-layer Structures

1993 ◽  
Vol 46 (3) ◽  
pp. 423 ◽  
Author(s):  
L Swierkowski ◽  
D Neilson ◽  
J Szymanski

Two layers of electrons or holes trapped at the adjacent interfaces of a gallium arsenide heterostructure can interact through the Coulomb interaction; this leads to a rich phase diagram of ground states, some of which are inhomogeneous in density. The cause of this is associated with each layer's acting as a polarisable background for the other, making it much easier for inhomogeneous configurations to be stable. Even in the uniform liquid phase the presence of a second layer can qualitatively change the nature of the low lying excitation spectrum and lead to large many-body effects in the spectrum, even at very long wavelengths.

Author(s):  
John Russo ◽  
Fabio Leoni ◽  
Fausto Martelli ◽  
Francesco SCIORTINO

Abstract Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Daniel Nogradi

Abstract We consider the most general perturbatively renormalizable theory of vector fields in four dimensions with a global SU(N) symmetry and massless couplings. The Lagrangian contains 1 quadratic, 2 cubic and 4 quartic couplings. The RG flow among this set of 7 couplings is computed to 1-loop and a rich phase diagram is mapped out; in particular it is shown that a finite number of asymptotically free RG-flows exist corresponding to non-trivial fixed points for the ratios of the couplings. None of these are gauge theories, i.e. possess only global SU(N) invariance but not a local one. We also include the most general ghost couplings, still with global SU(N) invariance, and compute the RG flow to 1-loop for all 9 resulting couplings. Again asymptotically free RG flows exist with non-trivial fixed points for the ratios of couplings. It is shown that Yang-Mills theory emerges at a particular fixed point. The theories at the other fixed points are marginally relevant gauge symmetry violating perturbations of Yang-Mills theory. The large-N limit is also investigated in detail.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


1988 ◽  
Vol 53 (12) ◽  
pp. 2995-3013
Author(s):  
Emerich Erdös ◽  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma

For a quantitative description of the epitaxial growth rate of gallium arsenide, two models are proposed including two rate controlling steps, namely the diffusion of components in the gas phase and the surface reaction. In the models considered, the surface reaction involves a reaction triple - or quadruple centre. In both models three mechanisms are considered which differ one from the other by different adsorption - and impact interaction of reacting particles. In every of the six cases, the pertinent rate equations were derived, and the models have been confronted with the experimentally found dependences of the growth rate on partial pressures of components in the feed. The results are discussed with regard to the plausibility of individual mechanisms and of both models, and also with respect to their applicability and the direction of further investigations.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


2021 ◽  
Vol 155 (2) ◽  
pp. 024503
Author(s):  
Amanda A. Chen ◽  
Alexandria Do ◽  
Tod A. Pascal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matúš Orendáč ◽  
Slavomír Gabáni ◽  
Pavol Farkašovský ◽  
Emil Gažo ◽  
Jozef Kačmarčík ◽  
...  

AbstractWe present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry–Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.


2001 ◽  
Vol 7 (S2) ◽  
pp. 426-427
Author(s):  
Bradley R. Johnson ◽  
Waltraud M. Kriven

Mullite (3Al2O3•2SiO2) exists in a solid solution field (∼57-63 mol% Al2O3) as the only stable compound in the Al2O3•SiO2 phase diagram at ambient pressures. Equilibrium 3:2 mullite has an orthorhombic structure with b>a (o-mullite). However, when initially crystallized from molecularly mixed, 3:2 precursors at temperatures < 1200°C, the first phase that forms has lattice parameters with a ≈b. This structure is often termed pseudotetragonal mullite (pt-mullite), since even when the ‘a’ and ‘b’ lattice parameters are identical, they are symmetrically independent. Pseudotetragonal mullite has been shown to contain approx. 70 mol% Al2O3. with increasing time and temperature, the structure gradually assimilates the residual SiO2, and the lattice parameters change, such that by 1400°C, the material has attained its equilibrium structure and composition.TEM was used to determine the spatial relationship between the crystalline phase and the residual, amorphous, SiO2-rich phase in pt-mullite. The starting materials were quenched, 3:2 mullite beads and fibers (made by containerless processing).


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Liron Levy ◽  
Moshe Goldstein

In recent years, tools from quantum information theory have become indispensable in characterizing many-body systems. In this work, we employ measures of entanglement to study the interplay between disorder and the topological phase in 1D systems of the Kitaev type, which can host Majorana end modes at their edges. We find that the entanglement entropy may actually increase as a result of disorder, and identify the origin of this behavior in the appearance of an infinite-disorder critical point. We also employ the entanglement spectrum to accurately determine the phase diagram of the system, and find that disorder may enhance the topological phase, and lead to the appearance of Majorana zero modes in systems whose clean version is trivial.


Sign in / Sign up

Export Citation Format

Share Document