scholarly journals Magnetic field independent shape of the zero-energy landau levels in a disordered T 3 model

2019 ◽  
Vol 21 (7) ◽  
pp. 073013
Author(s):  
Zhi Yang ◽  
Weiwei Chen ◽  
Qunxiang Li ◽  
Q W Shi
Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


The distortion of the lines of flow of an electric current in a thin metal plate by the action of a magnetic field was discovered in 1879. Hall attributed this to the action of the magnetic field on the molecular currents in the metal film, which were deflected to one side or the other and accompanied by a corresponding twist of the equipotential lines. This explanation did not pass without criticism, and another theory of the effect found by Hall was published in 1884. In that paper the author seeks to explain the effect by assuming a combination of certain mechanical strains and Peltier effects, a thermo-electric current being set up between the strained and the unstrained portions. The effect of such strain was to produce a reverse effect in some metals, and these were precisely the metals for which the Hall effect was found to reverse. Aluminium was the only exception. In other respects, however, as shown by Hall in a later paper, Bidwell's theory did not stand the test of experiment, and the results lend no support to his theory, while they are in complete accordance withe the explanation that the molecular currents are disturbed by the action of the magnetic field. On the electron theory of metallic conduction, the mechanism of the Hall effect is more obvious, but at present no satisfactory explanation of the reversal found in some metals is known. Further experiments have made it clear that there is a real deflection of the elementary currents, due to the application of the magnetic field, independent of any effect due to strain.


1991 ◽  
Vol 06 (30) ◽  
pp. 2819-2826 ◽  
Author(s):  
GERALD V. DUNNE ◽  
ALBERTO LERDA ◽  
CARLO A. TRUGENBERGER

We construct exact many-body eigenstates of both energy and angular momentum for the N-anyon problem in an external magnetic field. We show that such states span the full ground state eigenspace and arise as correlation functions of Fubini-Veneziano vertex operators of string theory.


Science ◽  
2018 ◽  
Vol 360 (6384) ◽  
pp. 62-66 ◽  
Author(s):  
Eric M. Spanton ◽  
Alexander A. Zibrov ◽  
Haoxin Zhou ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

Topologically ordered phases are characterized by long-range quantum entanglement and fractional statistics rather than by symmetry breaking. First observed in a fractionally filled continuum Landau level, topological order has since been proposed to arise more generally at fractional fillings of topologically nontrivial Chern bands. Here we report the observation of gapped states at fractional fillings of Harper-Hofstadter bands arising from the interplay of a magnetic field and a superlattice potential in a bilayer graphene–hexagonal boron nitride heterostructure. We observed phases at fractional filling of bands with Chern indices C=−1, ±2, and ±3. Some of these phases, in C=−1 and C=2 bands, are characterized by fractional Hall conductance—that is, they are known as fractional Chern insulators and constitute an example of topological order beyond Landau levels.


2020 ◽  
Vol 233 ◽  
pp. 03004
Author(s):  
M.F.C. Martins Quintela ◽  
J.C.C. Guerra ◽  
S.M. João

In AA-stacked twisted bilayer graphene, the lower energy bands become completely flat when the twist angle passes through certain specific values: the so-called “magic angles”. The Dirac peak appears at zero energy due to the flattening of these bands when the twist angle is sufficiently small [1-3]. When a constant perpendicular magnetic field is applied, Landau levels start appearing as expected [5]. We used the Kernel Polynomial Method (KPM) [6] as implemented in KITE [7] to study the optical and electronic properties of these systems. The aim of this work is to analyze how the features of these quantities change with the twist angle in the presence of an uniform magnetic field.


2002 ◽  
Vol 17 (28) ◽  
pp. 4081-4093 ◽  
Author(s):  
H. FAKHRI ◽  
H. MOTAVALI

The eigenstates and their degeneracy for parasupersymmetric Hamiltonian of arbitrary order p, corresponding to the motion of a charged particle with spin [Formula: see text] on the flat surface in the presence of a constant magnetic field along z-axis, are calculated. The eigenstates are expressed in terms of Landau levels quantum states with dynamical symmetry group H4. Furthermore, parasupersymmetric coherent states with multiplicity degeneracy are derived for an ad hoc lowering operator of the eigenstates in terms of ordinary coherent states of Landau Hamiltonian.


2008 ◽  
Vol 100 (20) ◽  
Author(s):  
Joseph G. Checkelsky ◽  
Lu Li ◽  
N. P. Ong

2002 ◽  
Vol 17 (04) ◽  
pp. 231-235 ◽  
Author(s):  
A. V. KUZNETSOV ◽  
N. V. MIKHEEV ◽  
M. V. OSIPOV

The electron mass operator in a strong magnetic field is calculated by summation of the leading log contributions in all orders of the perturbation theory. An influence of the strong field on the virtual photon polarization operator is taken into account. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation.


Sign in / Sign up

Export Citation Format

Share Document