Design and physics basis for the upcoming DIII-D SAS-VW campaign to quantify tungsten leakage and transport in a new slot divertor geometry

2021 ◽  
Author(s):  
Tyler Abrams ◽  
Gregory Sinclair ◽  
J.H. Nichols ◽  
Ezekial A Unterberg ◽  
David Donovan ◽  
...  

Abstract A set of experiments are planned to exploit the high SOL collisionality enabled by a tightly baffled slot divertor geometry to suppress tungsten leakage in DIII-D. A toroidal row of graphite tiles from the Small Angle Slot (SAS) divertor is being coated with 10-15 µm of tungsten. New spectroscopic viewing chords with in-vacuo optics will measure the W gross erosion source from the divertor surface with high spatial and temporal resolution. In parallel, the bottom of the SAS divertor is changed from a flat to a "V" shape. New SOLPS-ITER/DIVIMP simulations conducted with drifts using the planned "V" shape predict a substantial reduction in W sourcing and SOL accumulation in either B×∇B direction relative to either the old SAS divertor shape or the open, lower divertor. Dedicated studies are planned to carefully characterize the level of W sourcing, leakage, and scrape-off-layer (SOL) accumulation in DIII-D over a wide range of plasma scenarios. Various actuators will be assessed for their efficacy in further reducing high-Z impurity sources and leakage from the slot divertor geometry. This coupled code-experiment validation effort will be used to stress-test physics models and build confidence in extrapolations to advanced, high-Z divertor geometries for next-step devices.

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


2014 ◽  
Vol 675-677 ◽  
pp. 1421-1424 ◽  
Author(s):  
Zhen Li Fan

For the issue of fault impact on the height of water-flowing fractured zone, the study worked out several damage heights of superincumbent stratum under the influence of different dip angles faults. The research shows that small angle fault influence area is apt to develop a wide range of the plastic zone,and the water-flowing fractured zone of high-angle fault influence area is apt to increase along the fault surface and breakover the aquifers of coal seam roof and floor.


Author(s):  
Eduardo H. M. Cruz ◽  
Matthias Diener ◽  
Laércio L. Pilla ◽  
Philippe O. A. Navaux

Current and future architectures rely on thread-level parallelism to sustain performance growth. These architectures have introduced a complex memory hierarchy, consisting of several cores organized hierarchically with multiple cache levels and NUMA nodes. These memory hierarchies can have an impact on the performance and energy efficiency of parallel applications as the importance of memory access locality is increased. In order to improve locality, the analysis of the memory access behavior of parallel applications is critical for mapping threads and data. Nevertheless, most previous work relies on indirect information about the memory accesses, or does not combine thread and data mapping, resulting in less accurate mappings. In this paper, we propose the Sharing-Aware Memory Management Unit (SAMMU), an extension to the memory management unit that allows it to detect the memory access behavior in hardware. With this information, the operating system can perform online mapping without any previous knowledge about the behavior of the application. In the evaluation with a wide range of parallel applications (NAS Parallel Benchmarks and PARSEC Benchmark Suite), performance was improved by up to 35.7% (10.0% on average) and energy efficiency was improved by up to 11.9% (4.1% on average). These improvements happened due to a substantial reduction of cache misses and interconnection traffic.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2013 ◽  
Vol 305 (2) ◽  
pp. R164-R170 ◽  
Author(s):  
D. Xu ◽  
J. K. Shoemaker ◽  
A. P. Blaber ◽  
P. Arbeille ◽  
K. Fraser ◽  
...  

Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 ± 8.9 beats per minute (bpm) compared with preflight 53.3 ± 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.


2021 ◽  
Author(s):  
Peter Linders ◽  
Martin ter Beest ◽  
Geert van den Bogaart

Many cellular processes are dependent on correct pH levels, and this is especially important for the secretory pathway. Defects in pH homeostasis in distinct organelles cause a wide range of diseases, including disorders of glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-sensitive mutant of green fluorescent protein (GFP), pHLuorin, has allowed for targeted pH measurements in various organelles, but the required sequential image acquisition is intrinsically slow and therefore the temporal resolution unsuitable to follow the rapid transit of cargo between organelles. We therefore applied fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar pH with just a single excitation wavelength. We first validated this method by confirming the pH in multiple compartments along the secretory pathway. Then, we analyze the dynamic pH changes within cells treated with Brefeldin A, a COPI coat inhibitor. Finally, we followed the pH changes of newly-synthesized molecules of the inflammatory cytokine tumor necrosis factor (TNF)-α while it was in transit from the endoplasmic reticulum via the Golgi to the plasma membrane. The toolbox we present here can be applied to measure intracellular pH with high spatial and temporal resolution, and can be used to assess organellar pH in disease models.


2000 ◽  
Author(s):  
Rupak K. Banerjee ◽  
Robert J. Lutz ◽  
Keyvan Keyhani ◽  
Robert L. Dedrick ◽  
Brian King ◽  
...  

Abstract Due to physiological barriers within the eye, which limit penetration of many drugs from the systemic circulation into the vitreous, the most common method of treating retinal disease is direct intravitreal injection. However, this common procedure may be inappropriate for a wide range of drugs as it may lead to highly variable concentrations potentially causing higher toxicity for tissues inside the eye and limiting therapeutic effect. A recent procedure is to use surgically implanted drug release device, called implant here, in the vitreous of the eye that allow controlled release of drug over a sustained period of time. For constant release of drug over 15 hours, a substantial reduction in peak drug concentration is predicted near the retina. When compared with the implant, a doubling of drug concentration would be expected for more than 3 hours near the retina for the intravitreal injection.


2018 ◽  
Vol 51 (3) ◽  
pp. 867-882 ◽  
Author(s):  
Jan Ilavsky ◽  
Fan Zhang ◽  
Ross N. Andrews ◽  
Ivan Kuzmenko ◽  
Pete R. Jemian ◽  
...  

Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS) facility has been transformed by several new developments. These comprise a conversion to higher-order crystal optics and higher X-ray energies as the standard operating mode, rapid fly scan measurements also as a standard operational mode, automated contiguous pinhole small-angle X-ray scattering (SAXS) measurements at intermediate scattering vectors, and associated rapid wide-angle X-ray scattering (WAXS) measurements for X-ray diffraction without disturbing the sample geometry. With each mode using the USAXS incident beam optics upstream of the sample, USAXS/SAXS/WAXS measurements can now be made within 5 min, allowingin situandoperandomeasurement capabilities with great flexibility under a wide range of sample conditions. These developments are described, together with examples of their application to investigate materials phenomena of technological importance. Developments of two novel USAXS applications, USAXS-based X-ray photon correlation spectroscopy and USAXS imaging, are also briefly reviewed.


2004 ◽  
Vol 126 (1) ◽  
pp. 69-74 ◽  
Author(s):  
A. G. Chen ◽  
Daniel J. Maloney ◽  
William H. Day

An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860°F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440-3090°F (1610–1970 K) with and without added humidity. The results show more than 90% reduction of NOx through 10% humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.


1997 ◽  
Vol 30 (5) ◽  
pp. 787-791 ◽  
Author(s):  
I. N. Serdyuk ◽  
G. Zaccaï

The triple isotopic substitution (TIS) method is based on the analysis of a scattering curve which is the difference between the scattering of two solutions containing appropriately deuterium-labelled particles. A necessary condition for the application of the method is that the two solutions are identical in all respects except for the extent of the deuterium label. Such an experimental scheme has allowed a number of unique physical experiments to be performed, the main ones being: (1) elimination of the contribution of the interparticle interference; (2) addition of both small- and large-sized foreign particles to those studied without distortions of the structural data; (3) highlighting of individual (quite small) regions in the molecules; (4) suppression of the dimerization contribution to the scattering curve. The application of this method is of special interest for studying the mutual three-dimensional disposition of individual small regions of molecules (3D mapping) and for investigating the geometrical properties of the surfaces of globular proteins. It is evident that TIS has a wide range of experimental possibilities, demonstrating that small-angle neutron scattering is one of the most informative structural methods for low resolution.


Sign in / Sign up

Export Citation Format

Share Document