scholarly journals Magnification and evolution biases in large-scale structure surveys

2021 ◽  
Vol 2021 (12) ◽  
pp. 009
Author(s):  
Roy Maartens ◽  
José Fonseca ◽  
Stefano Camera ◽  
Sheean Jolicoeur ◽  
Jan-Albert Viljoen ◽  
...  

Abstract Measurements of galaxy clustering in upcoming surveys such as those planned for the Euclid and Roman satellites, and the SKA Observatory, will be sensitive to distortions from lensing magnification and Doppler effects, beyond the standard redshift-space distortions. The amplitude of these contributions depends sensitively on magnification bias and evolution bias in the galaxy number density. Magnification bias quantifies the change in the observed number of galaxies gained or lost by lensing magnification, while evolution bias quantifies the physical change in the galaxy number density relative to the conserved case. These biases are given by derivatives of the number density, and consequently are very sensitive to the form of the luminosity function. We give a careful derivation of the magnification and evolution biases, clarifying a number of results in the literature. We then examine the biases for a variety of surveys, encompassing galaxy surveys and line intensity mapping at radio and optical/near-infrared wavelengths.

1998 ◽  
Vol 179 ◽  
pp. 278-280
Author(s):  
J. P. Gardner ◽  
R. M. Sharples ◽  
C. S. Frenk ◽  
B. E. Carrasco

The luminosity function of galaxies is central to many problems in cosmology, including the interpretation of faint number counts. The near-infrared provides several advantages over the optical for statistical studies of galaxies, including smooth and well-understood K-corrections and expected luminosity evolution. The K–band is dominated by near-solar mass stars which make up the bulk of the galaxy. The absolute K magnitude is a measure of the visible mass in a galaxy, and thus the K–band luminosity function is an observational counterpart of the mass function of galaxies.


2020 ◽  
Vol 499 (2) ◽  
pp. 2598-2607
Author(s):  
Mike (Shengbo) Wang ◽  
Florian Beutler ◽  
David Bacon

ABSTRACT Relativistic effects in clustering observations have been shown to introduce scale-dependent corrections to the galaxy overdensity field on large scales, which may hamper the detection of primordial non-Gaussianity fNL through the scale-dependent halo bias. The amplitude of relativistic corrections depends not only on the cosmological background expansion, but also on the redshift evolution and sensitivity to the luminosity threshold of the tracer population being examined, as parametrized by the evolution bias be and magnification bias s. In this work, we propagate luminosity function measurements from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) to be and s for the quasar (QSO) sample, and thereby derive constraints on relativistic corrections to its power spectrum multipoles. Although one could mitigate the impact on the fNL signature by adjusting the redshift range or the luminosity threshold of the tracer sample being considered, we suggest that, for future surveys probing large cosmic volumes, relativistic corrections should be forward modelled from the tracer luminosity function including its uncertainties. This will be important to quasar clustering measurements on scales $k \sim 10^{-3}\, h\, {\rm Mpc}^{-1}$ in upcoming surveys such as the Dark Energy Spectroscopic Instrument (DESI), where relativistic corrections can overwhelm the expected fNL signature at low redshifts z ≲ 1 and become comparable to fNL ≃ 1 in the power spectrum quadrupole at redshifts z ≳ 2.5.


2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


2014 ◽  
Vol 11 (S308) ◽  
pp. 368-371
Author(s):  
Jukka Nevalainen ◽  
L. J. Liivamägi ◽  
E. Tempel ◽  
E. Branchini ◽  
M. Roncarelli ◽  
...  

AbstractWe have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density NH in Sculptor agree with those obtained via the X-ray analysis. Due to the additional NH estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.


2004 ◽  
Vol 21 (4) ◽  
pp. 344-351 ◽  
Author(s):  
Simon Driver

AbstractWith the advent of large-scale surveys (i.e. Legacy Surveys) it is now possible to start looking beyond the galaxy luminosity function (LF) to more detailed statistical representations of the galaxy population, i.e multivariate distributions. In this review I first summarise the current state-of-play of the B-band global and cluster LFs and then briefly present two promising bivariate distributions: the luminosity–surface brightness plane (LSP) and the colour–luminosity plane (CLP). In both planes galaxy bulges and galaxy disks form marginally overlapping but distinct distributions, indicating two key formation/evolutionary processes (presumably merger and accretion). Forward progress in this subject now requires the routine application of reliable bulge–disk decomposition codes to allow independent investigation of these two key components.


2018 ◽  
Vol 619 ◽  
pp. A4 ◽  
Author(s):  
Javier Alonso-García ◽  
Roberto K. Saito ◽  
Maren Hempel ◽  
Dante Minniti ◽  
Joyce Pullen ◽  
...  

Context. The inner regions of the Galaxy are severely affected by extinction, which limits our capability to study the stellar populations present there. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey has observed this zone at near-infrared wavelengths where reddening is highly diminished. Aims. By exploiting the high resolution and wide field-of-view of the VVV images we aim to produce a deep, homogeneous, and highly complete database of sources that cover the innermost regions of our Galaxy. Methods. To better deal with the high crowding in the surveyed areas, we have used point spread function (PSF)-fitting techniques to obtain a new photometry of the VVV images, in the ZY JHKs near-infrared filters available. Results. Our final catalogs contain close to one billion sources, with precise photometry in up to five near-infrared filters, and they are already being used to provide an unprecedented view of the inner Galactic stellar populations. We make these catalogs publicly available to the community. Our catalogs allow us to build the VVV giga-CMD, a series of color-magnitude diagrams of the inner regions of the Milky Way presented as supplementary videos. We provide a qualitative analysis of some representative CMDs of the inner regions of the Galaxy, and briefly mention some of the studies we have developed with this new dataset so far.


1995 ◽  
Vol 148 ◽  
pp. 510-521
Author(s):  
C.A. Collins

AbstractIn this paper some of the major results from the COSMOS and APM digitised galaxy surveys are presented. The main motivation behind these catalogues was to study large-scale structure in the universe. We begin by outlining the importance of such studies to cosmology and discussing the early results from the visually compiled galaxy catalogues. The impact of the digitised catalogues is demonstrated by focussing on three key areas of research; the galaxy-galaxy two-point angular correlation function, the cluster-cluster spatial correlation function, and galaxy number counts.


2020 ◽  
Vol 497 (2) ◽  
pp. 1765-1790
Author(s):  
Joyce Byun ◽  
Felipe Oliveira Franco ◽  
Cullan Howlett ◽  
Camille Bonvin ◽  
Danail Obreschkow

ABSTRACT We show that correlations between the phases of the galaxy density field in redshift space provide additional information about the growth rate of large-scale structure that is complementary to the power-spectrum multipoles. In particular, we consider the multipoles of the line correlation function (LCF), which correlates phases between three collinear points, and use the Fisher forecasting method to show that the LCF multipoles can break the degeneracy between the measurement of the growth rate of structure f and the amplitude of perturbations σ8 that is present in the power-spectrum multipoles at large scales. This leads to an improvement in the measurement of f and σ8 by up to 220 per cent for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ and up to 50 per cent for $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$ at redshift z = 0.25, with respect to power-spectrum measurements alone for the upcoming generation of galaxy surveys like DESI and Euclid. The average improvements in the constraints on f and σ8 for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ are ∼90 per cent for the DESI BGS sample with mean redshift $\overline{z}=0.25$, ∼40 per cent for the DESI ELG sample with $\overline{z}=1.25$, and ∼40 per cent for the Euclid Hα galaxies with $\overline{z}=1.3$. For $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$, the average improvements are ∼40 per cent for the DESI BGS sample and ∼20 per cent for both the DESI ELG and Euclid Hα galaxies.


2009 ◽  
Vol 5 (S262) ◽  
pp. 428-429
Author(s):  
Ricardo P. Schiavon ◽  
Steven R. Majewski

AbstractThe Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a large scale, high-resolution, near-infrared spectroscopic survey of Milky Way stellar populations and one of the four experiments in the Sloan Digital Sky Survey III (SDSS-III). APOGEE will be based on a new multi-fiber cryogenic spectrograph, currently under construction, expected to begin survey observations on the 2.5 m Sloan telescope in the Spring of 2011. APOGEE will measure high-precision radial velocities and elemental abundances for ~15 elements for ~ 105 stars, and is expected to shed new light on the processes that led to the formation of the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document